Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher I. Keeling is active.

Publication


Featured researches published by Christopher I. Keeling.


Naturwissenschaften | 2003

The effect of queen pheromones on worker honey bee ovary development

Shelley E. R. Hoover; Christopher I. Keeling; Mark L. Winston; Keith N. Slessor

We report results that address a long-standing controversy in honey bee biology, the identity of the queen-produced compounds that inhibit worker honey bee ovary development. As the honey bee is the only organism for which identities have been proposed for any pheromone that regulates reproduction, the resolution of its identity is of broad significance. We examined the effects of synthetic honey bee queen mandibular pheromone (QMP), four newly identified queen retinue pheromone components, and whole-queen extracts on the ovary development of caged worker bees. The newly identified compounds did not inhibit worker ovary development alone, nor did they improve the efficacy of QMP when applied in combination. QMP was as effective as queen extracts at ovary regulation. Caged workers in the QMP and queen extract treatments had better developed ovaries than did workers remaining in queenright colonies. We conclude that QMP is responsible for the ovary-regulating pheromonal capability of queens from European-derived Apis mellifera subspecies.


Bioinformatics | 2013

Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data

Inanc Birol; Anthony Raymond; Shaun D. Jackman; Stephen Pleasance; Robin Coope; Greg Taylor; Macaire Man Saint Yuen; Christopher I. Keeling; Dana Brand; Benjamin P. Vandervalk; Heather Kirk; Pawan Pandoh; Richard A. Moore; Yongjun Zhao; Andrew J. Mungall; Barry Jaquish; Alvin Yanchuk; Carol Ritland; Brian Boyle; Jean Bousquet; Kermit Ritland; John MacKay; Jörg Bohlmann; Steven J.M. Jones

White spruce (Picea glauca) is a dominant conifer of the boreal forests of North America, and providing genomics resources for this commercially valuable tree will help improve forest management and conservation efforts. Sequencing and assembling the large and highly repetitive spruce genome though pushes the boundaries of the current technology. Here, we describe a whole-genome shotgun sequencing strategy using two Illumina sequencing platforms and an assembly approach using the ABySS software. We report a 20.8 giga base pairs draft genome in 4.9 million scaffolds, with a scaffold N50 of 20 356 bp. We demonstrate how recent improvements in the sequencing technology, especially increasing read lengths and paired end reads from longer fragments have a major impact on the assembly contiguity. We also note that scalable bioinformatics tools are instrumental in providing rapid draft assemblies. Availability: The Picea glauca genome sequencing and assembly data are available through NCBI (Accession#: ALWZ0100000000 PID: PRJNA83435). http://www.ncbi.nlm.nih.gov/bioproject/83435. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Functional plasticity of paralogous diterpene synthases involved in conifer defense

Christopher I. Keeling; Sabrina Weisshaar; Roy P. C. Lin; Jörg Bohlmann

The diversity of terpenoid compounds produced by plants plays an important role in mediating various plant–herbivore, plant–pollinator, and plant–pathogen interactions. This diversity has resulted from gene duplication and neofunctionalization of the enzymes that synthesize and subsequently modify terpenes. Two diterpene synthases in Norway spruce (Picea abies), isopimaradiene synthase and levopimaradiene/abietadiene synthase, provide the hydrocarbon precursors for most of the diterpene resin acids found in the defensive oleoresin of conifers. Although these paralogous enzymes are 91% identical at the amino acid level, one is a single-product enzyme, whereas the other is a multiproduct enzyme that forms completely different products. We used a rational approach of homology modeling, protein sequence comparison, domain swapping, and a series of reciprocal site-directed mutagenesis to identify the specific residues that direct the different product outcomes. A one-amino acid mutation switched the levopimaradiene/abietadiene synthase into producing isopimaradiene and sandaracopimaradiene and none of its normal products. Four mutations were sufficient to reciprocally reverse the product profiles for both of these paralogous enzymes while maintaining catalytic efficiencies similar to the wild-type enzymes. This study illustrates how neofunctionalization can result from relatively minor changes in protein sequence, increasing the diversity of secondary metabolites important for conifer defense.


Genome Biology | 2013

Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest

Christopher I. Keeling; Macaire M.S. Yuen; Nancy Y. Liao; Roderick T. Docking; Simon K. Chan; Greg Taylor; Diana L. Palmquist; Shaun D. Jackman; Anh Nguyen; Maria Li; Hannah Henderson; Jasmine K. Janes; Yongjun Zhao; Pawan Pandoh; Richard G. Moore; Felix A. H. Sperling; Dezene P. W. Huber; Inanc Birol; Steven J.M. Jones; Joerg Bohlmann

BackgroundThe mountain pine beetle, Dendroctonus ponderosae Hopkins, is the most serious insect pest of western North American pine forests. A recent outbreak destroyed more than 15 million hectares of pine forests, with major environmental effects on forest health, and economic effects on the forest industry. The outbreak has in part been driven by climate change, and will contribute to increased carbon emissions through decaying forests.ResultsWe developed a genome sequence resource for the mountain pine beetle to better understand the unique aspects of this insects biology. A draft de novo genome sequence was assembled from paired-end, short-read sequences from an individual field-collected male pupa, and scaffolded using mate-paired, short-read genomic sequences from pooled field-collected pupae, paired-end short-insert whole-transcriptome shotgun sequencing reads of mRNA from adult beetle tissues, and paired-end Sanger EST sequences from various life stages. We describe the cytochrome P450, glutathione S-transferase, and plant cell wall-degrading enzyme gene families important to the survival of the mountain pine beetle in its harsh and nutrient-poor host environment, and examine genome-wide single-nucleotide polymorphism variation. A horizontally transferred bacterial sucrose-6-phosphate hydrolase was evident in the genome, and its tissue-specific transcription suggests a functional role for this beetle.ConclusionsDespite Coleoptera being the largest insect order with over 400,000 described species, including many agricultural and forest pest species, this is only the second genome sequence reported in Coleoptera, and will provide an important resource for the Curculionoidea and other insects.


BMC Genomics | 2013

Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae)

Martin Andersson; Ewald Grosse-Wilde; Christopher I. Keeling; Jonas M. Bengtsson; Macaire M.S. Yuen; Maria Li; Ylva Hillbur; Joerg Bohlmann; Bill S. Hansson; Fredrik Schlyter

BackgroundThe European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families.ResultsGene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets.ConclusionsThe protein families important for chemoreception have now been identified in three coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.


BMC Plant Biology | 2011

Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.)

Christopher I. Keeling; Sabrina Weisshaar; Steven Ralph; Sharon Jancsik; Britta Hamberger; Harpreet K. Dullat; Jörg Bohlmann

BackgroundIn conifers, terpene synthases (TPSs) of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress.ResultsThe availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs) and full-length cDNAs in several spruce (Picea) species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis), 5 from white spruce (P. glauca), and 4 from hybrid white spruce (P. glauca × P. engelmannii), which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases.ConclusionsThe functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.


Plant Physiology | 2010

Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms

Christopher I. Keeling; Harpreet K. Dullat; Mack Yuen; Steven Ralph; Sharon Jancsik; Jörg Bohlmann

The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.


Insect Biochemistry and Molecular Biology | 2012

Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests

Christopher I. Keeling; Hannah Henderson; Maria Li; Mack Yuen; Erin L. Clark; Jordie D. Fraser; Dezene P. W. Huber; Nancy Y. Liao; T. Roderick Docking; Inanc Birol; Simon K. Chan; Greg Taylor; Diana L. Palmquist; Steven J.M. Jones; Joerg Bohlmann

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera.


Plant Journal | 2015

Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism

René L. Warren; Christopher I. Keeling; Macaire Man Saint Yuen; Anthony Raymond; Greg Taylor; Benjamin P. Vandervalk; Hamid Mohamadi; Daniel Paulino; Readman Chiu; Shaun D. Jackman; Gordon Robertson; Chen Yang; Brian Boyle; Margarete Hoffmann; Detlef Weigel; David R. Nelson; Carol Ritland; Nathalie Isabel; Barry Jaquish; Alvin Yanchuk; Jean Bousquet; Steven J.M. Jones; John MacKay; Inanc Birol; Joerg Bohlmann

White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.


Plant Journal | 2011

An integrated genomic, proteomic and biochemical analysis of (+)‐3‐carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil

Dawn E. Hall; Jeanne A. Robert; Christopher I. Keeling; Dominik Domanski; Alfonso Lara Quesada; Sharon Jancsik; Michael A. Kuzyk; Britta Hamberger; Christoph H. Borchers; Jörg Bohlmann

Conifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (+)-3-carene synthase (PsTPS-3car) genes (82-95% amino acid sequence identity). Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) that is expressed in both genotypes, one gene (PsTPS-3car2) that is expressed only in resistant trees, and one gene (PsTPS-3car3) that is expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring confirmed this pattern of differential expression of members of the PsTPS-3car family at the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3 as a factor contributing to the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by copy number variation of PsTPS-3car genes, variation of gene and protein expression, and variation in catalytic efficiencies.

Collaboration


Dive into the Christopher I. Keeling's collaboration.

Top Co-Authors

Avatar

Jörg Bohlmann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Joerg Bohlmann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dezene P. W. Huber

University of Northern British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hannah Henderson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Harpreet K. Dullat

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge