Christopher I. Morse
Manchester Metropolitan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher I. Morse.
Experimental Physiology | 2008
Robert C.I. Wüst; Christopher I. Morse; Arnold de Haan; David A. Jones; Hans Degens
To explore the cause of higher skeletal muscle fatigue resistance in women than men, we used electrically evoked contractions (1 s on, 1 s off, 30 Hz, 2 min), which circumvent motivational bias and allow examination of contractile properties. We compared 29 men [26.5 (7.0) years old; mean (s.d.)] with 35 women [25.4 (7.6) years old]. Strength of the quadriceps muscle was higher in men than women (P < 0.001). The lower maximal rate of relaxation in women (P= 0.002) indicates that their muscles were slower than those of men. The torque declined less in women than in men [37.7 (10.7) versus 29.9 (10.0)%; P= 0.002], and was not related to muscle strength or size, as determined with magnetic resonance imaging. The sex difference in fatigability was also seen when the circulation to the leg was occluded [torque declined 76.9 (10.8) versus 59.5 (16.9)% in men versus women, respectively; P= 0.008]. The maximal rate of relaxation correlated with the fatigability of the muscle under all conditions (correlations ranging from 0.34 to 0.51, P < 0.02). We conclude that the sex‐related difference in skeletal muscle fatigue resistance is not explicable by differences in motivation, muscle size, oxidative capacity and/or blood flow between sexes, but might be related to differences in fibre type composition.
Journal of Strength and Conditioning Research | 2009
Robert Needham; Christopher I. Morse; Hans Degens
Needham, RA, Morse, CI, and Degens, H. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. J Strength Cond Res 23(9): 2614-2620, 2009-The purpose of the study was to investigate the acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. Twenty elite youth soccer players (mean age 17.2 ± 1.2 years) performed 3 different warm-up protocols in a random order on nonconsecutive days. Each warm-up protocol consisted of a 5-minute low-intensity jog followed by 10 minutes of static stretching (SS), dynamic stretching (DS), or dynamic stretching followed by 8 front squats + 20% body mass (DSR). Subjects performed a countermovement jump followed by a 10- and 20-m sprint test immediately and at 3 and 6 minutes after each warm-up protocol. Vertical jump performance following DSR was better at 3 and 6 minutes than after DS, which in turn was better than after SS at 0, 3, and 6 minutes (p < 0.05). Jump performance was better at 3 minutes than immediately after, and this improvement was maintained at 6 minutes after DSR (p < 0.05). A better sprint performance was observed after DSR and DS compared with SS immediately and at 3 and 6 minutes following each warm-up protocol (p < 0.05). The results of the study suggest that a dynamic warm-up with the inclusion of resistance enhances jumping ability more than dynamic exercise alone. In addition, a dynamic warm-up produces a superior sprint and jump performance compared to a warm-up consisting of static stretching.
Acta Physiologica | 2007
Christopher I. Morse; Robert C.I. Wüst; David A. Jones; A. de Haan; Hans Degens
Aim: To determine whether muscle function is compromised in healthy smokers in comparison with activity‐matched non‐smokers.
Biogerontology | 2016
David J. Tomlinson; Robert M. Erskine; Christopher I. Morse; Keith Winwood; Gladys Onambele-Pearson
Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.
Acta Physiologica | 2008
Christopher I. Morse; L. J. Pritchard; Robert C.I. Wüst; David A. Jones; Hans Degens
Aim: To determine whether inhalation of carbon monoxide (CO), resulting in carboxyhaemoglobin (COHb) levels observed in smokers, had an effect on muscle fatigue during electrically evoked and voluntary muscle contractions.
Journal of Anatomy | 2014
D. J. Tomlinson; Robert M. Erskine; Keith Winwood; Christopher I. Morse; Gladys L. Onambélé
It is unknown whether loading of the lower limbs through additional storage of fat mass as evident in obesity would promote muscular adaptations similar to those seen with resistance exercise. It is also unclear whether ageing modulates any such adjustments. This study aimed to examine the relationships between adiposity, ageing and skeletal muscle size and architecture. A total of 100 untrained healthy women were categorised by age into young (Y) (mean ± SD: 26.7 ± 9.4 years) vs. old (O) (65.1 ± 7.2 years) and body mass index (BMI) classification (underweight, normal weight, overweight and obese). Participants were assessed for body fat using dual energy x‐ray absorptiometry, and for gastrocnemius medialis (GM) muscle architecture (skeletal muscle fascicle pennation angle and length) and size [GM muscle volume and physiological cross‐sectional area (PCSA)] using B‐mode ultrasonography. GM fascicle pennation angle (FPA) in the obese Y females was 25% greater than underweight (P = 0.001) and 25% greater than normal weight (P = 0.001) individuals, while O females had 32 and 22% greater FPA than their underweight (P = 0.008) and normal weight (P = 0.003) counterparts. Furthermore, FPA correlated with body mass in both Y and O females (Y r = 0.303; P < 0.001; O r = 0.223; P = 0.001), yet no age‐related differences in the slope or r‐values were observed (P > 0.05). Both GM muscle volume (P = 0.003) and PCSA (P = 0.004) exhibited significant age × BMI interactions. In addition, muscle volume and PCSA correlated with BMI, body mass and fat mass. Interestingly, ageing reduced both the degree of association in these correlations (P < 0.05) and the slope of the regressions (P < 0.05). Our findings partly support our hypotheses in that obesity‐associated changes in GM PCSA and volume differed between the young and old. The younger GM muscle adapted to the loading induced by high levels of body mass, adiposity and BMI by increasing its volume and increasing its pennation angle, ultimately enabling it to produce higher maximum torque. Such an adaptation to increased loading did not occur in the older GM muscle. Nonetheless, the older GM muscle FPA increased to a similar extent to that seen in young GM muscle, an effect which partly explains the relatively enhanced absolute maximum torque observed in obese older females.
Acta Physiologica | 2013
Kirsty M. Hicks; Gladys Onambele-Pearson; Keith Winwood; Christopher I. Morse
Elastic tendons have been suggested to attenuate fascicle lengthening during eccentric contractions; however, there is no in vivo evidence to support this hypothesis. Therefore, the aim of this study was to determine whether patella tendon stiffness modulates vastus lateralis (VL) fascicle lengthening during eccentric contractions in males and females.
Journal of Strength and Conditioning Research | 2014
Gerard E. McMahon; Christopher I. Morse; Adrian Burden; Keith Winwood; Gladys L. Onambélé
Abstract McMahon, GE, Morse, CI, Burden, A, Winwood, K, and Onambélé, GL. Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. J Strength Cond Res 28(1): 245–255, 2014—The impact of using different resistance training (RT) kinematics, which therefore alters RT mechanics, and their subsequent effect on adaptations remain largely unreported. The aim of this study was to identify the differences to training at a longer (LR) compared with a shorter (SR) range of motion (ROM) and the time course of any changes during detraining. Recreationally active participants in LR (aged 19 ± 2.6 years; n = 8) and SR (aged 19 ± 3.4 years; n = 8) groups undertook 8 weeks of RT and 4 weeks of detraining. Muscle size, architecture, subcutaneous fat, and strength were measured at weeks 0, 8, 10, and 12 (repeated measures). A control group (aged 23 ± 2.4 years; n = 10) was also monitored during this period. Significant (p > 0.05) posttraining differences existed in strength (on average 4 ± 2 vs. 18 ± 2%), distal anatomical cross-sectional area (59 ± 15 vs. 16 ± 10%), fascicle length (23 ± 5 vs. 10 ± 2%), and subcutaneous fat (22 ± 8 vs. 5 ± 2%), with LR exhibiting greater adaptations than SR. Detraining resulted in significant (p > 0.05) deteriorations in all muscle parameters measured in both groups, with the SR group experiencing a more rapid relative loss of postexercise increases in strength than that experienced by the LR group (p > 0.05). Greater morphological and architectural RT adaptations in the LR (owing to higher mechanical stress) result in a more significant increase in strength compared with that of the SR. The practical implications for this body of work follow that LR should be observed in RT where increased muscle strength and size are the objective, because we demonstrate here that ROM should not be compromised for greater external loading.
Muscle & Nerve | 2014
Ayser W. Hussain; Gladys L. Onambélé; Alun G. Williams; Christopher I. Morse
Introduction: Muscle weakness is present in the paretic limbs of individuals with cerebral palsy (CP). We aimed to determine what neuromuscular factors contribute to weakness in adults with CP during isometric maximal voluntary contractions (iMVCs). Methods: Gastrocnemius anatomical cross‐sectional area (ACSA) and agonist and antagonist activation were measured in 11 CP and 11 control adult men during plantarflexion iMVC. Results: Plantarflexion iMVC torque of the paretic leg was 42% and 52% less than in the non‐paretic and control limbs, respectively. The paretic gastrocnemius ACSA was smaller than in the control group only. Paretic agonist activation was less than the non‐paretic and control groups, whereas antagonist coactivation was higher. Multiple regression analysis revealed muscle activation accounted for 57% of variation in paretic plantarflexion iMVC torque. Conclusions: In individuals with CP, muscle weakness in the paretic limb is attributed primarily to impaired neural activation and, to a lesser degree, ACSA. Muscle Nerve 49: 76–83, 2014
PLOS ONE | 2016
Kirsty M. Hicks; Gladys L. Onambélé; Keith Winwood; Christopher I. Morse
Aim To investigate whether there is a sex difference in exercise induced muscle damage. Materials and Method Vastus Lateralis and patella tendon properties were measured in males and females using ultrasonography. During maximal voluntary eccentric knee extensions (12 reps x 6 sets), Vastus Lateralis fascicle lengthening and maximal voluntary eccentric knee extensions torque were recorded every 10° of knee joint angle (20–90°). Isometric torque, Creatine Kinase and muscle soreness were measured pre, post, 48, 96 and 168 hours post damage as markers of exercise induced muscle damage. Results Patella tendon stiffness and Vastus Lateralis fascicle lengthening were significantly higher in males compared to females (p<0.05). There was no sex difference in isometric torque loss and muscle soreness post exercise induced muscle damage (p>0.05). Creatine Kinase levels post exercise induced muscle damage were higher in males compared to females (p<0.05), and remained higher when maximal voluntary eccentric knee extension torque, relative to estimated quadriceps anatomical cross sectional area, was taken as a covariate (p<0.05). Conclusion Based on isometric torque loss, there is no sex difference in exercise induced muscle damage. The higher Creatine Kinase in males could not be explained by differences in maximal voluntary eccentric knee extension torque, Vastus Lateralis fascicle lengthening and patella tendon stiffness. Further research is required to understand the significant sex differences in Creatine Kinase levels following exercise induced muscle damage.