Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Bakkenist is active.

Publication


Featured researches published by Christopher J. Bakkenist.


Nature | 2003

DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation

Christopher J. Bakkenist; Michael B. Kastan

The ATM protein kinase, mutations of which are associated with the human disease ataxia–telangiectasia, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described ‘FAT’ domain. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. Most ATM molecules in the cell are rapidly phosphorylated on this site after doses of radiation as low as 0.5 Gy, and binding of a phosphospecific antibody is detectable after the introduction of only a few DNA double-strand breaks in the cell. Activation of the ATM kinase seems to be an initiating event in cellular responses to irradiation, and our data indicate that ATM activation is not dependent on direct binding to DNA strand breaks, but may result from changes in the structure of chromatin.


Cell | 2004

Initiating Cellular Stress Responses

Christopher J. Bakkenist; Michael B. Kastan

The phosphoinositide 3-kinase related kinases (PIKKs) mediate responses to diverse stresses, including DNA double-strand breaks (DSBs), abnormal replication fork progression, the recognition of premature termination codons in mRNAs, and inadequate nutrient availability. Rigorous control of these kinases limits cellular damage and promotes cell viability in the presence of stress. Control mechanisms include the localization of PIKKs into multiprotein complexes at the sites of damage and mediation of protein-protein contacts such that substrates are allowed access to the PIKK catalytic domains.


PLOS Biology | 2004

The Telomeric Protein TRF2 Binds the ATM Kinase and Can Inhibit the ATM-Dependent DNA Damage Response

Jan Karlseder; Kristina Hoke; Olga K Mirzoeva; Christopher J. Bakkenist; Michael B. Kastan; John H.J. Petrini; Titia de Lange

The telomeric protein TRF2 is required to prevent mammalian telomeres from activating DNA damage checkpoints. Here we show that overexpression of TRF2 affects the response of the ATM kinase to DNA damage. Overexpression of TRF2 abrogated the cell cycle arrest after ionizing radiation and diminished several other readouts of the DNA damage response, including phosphorylation of Nbs1, induction of p53, and upregulation of p53 targets. TRF2 inhibited autophosphorylation of ATM on S1981, an early step in the activation of this kinase. A region of ATM containing S1981 was found to directly interact with TRF2 in vitro, and ATM immunoprecipitates contained TRF2. We propose that TRF2 has the ability to inhibit ATM activation at telomeres. Because TRF2 is abundant at chromosome ends but not elsewhere in the nucleus, this mechanism of checkpoint control could specifically block a DNA damage response at telomeres without affecting the surveillance of chromosome internal damage.


Oncogene | 2004

Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation

Zuzana Horejsi; Jacob Falck; Christopher J. Bakkenist; Michael B. Kastan; Jiri Lukas; Jiri Bartek

The ATM kinase is a tumour suppressor and a key activator of genome integrity checkpoints in mammalian cells exposed to ionizing radiation (IR) and other insults that elicit DNA double-strand breaks (DSBs). In response to IR, autophosphorylation on serine 1981 causes dissociation of ATM dimers and initiates cellular ATM kinase activity. Here, we show that the kinetics and magnitude of ATM Ser1981 phosphorylation after exposure of human fibroblasts to low doses (2 Gy) of IR are altered in cells deficient in Nbs1, a substrate of ATM and a component of the MRN (Mre11–Rad50–Nbs1) complex involved in processing/repair of DSBs and ATM-dependent cell cycle checkpoints. Timely phosphorylation of both ATM Ser1981 and the ATM substrate Smc1 after IR were rescued via retrovirally mediated reconstitution of Nbs1-deficient cells by wild-type Nbs1 or mutants of Nbs1 defective in the FHA domain or nonphosphorylatable by ATM, but not by Nbs1 lacking the Mre11-interaction domain. Our data indicate that apart from its role downstream of ATM in the DNA damage checkpoint network, the MRN complex serves also as a modulator/amplifier of ATM activity. Although not absolutely required for ATM activation, the MRN nuclease complex may help reach the threshold activity of ATM necessary for optimal genome maintenance and prevention of cancer.


Stem Cells | 2009

Ionizing Radiation Induces Ataxia Telangiectasia Mutated‐Dependent Checkpoint Signaling and G2 But Not G1 Cell Cycle Arrest in Pluripotent Human Embryonic Stem Cells

Olga Momčilović; Serah Choi; Sandra Varum; Christopher J. Bakkenist; Gerald Schatten; Christopher S. Navara

Human embryonic stem (ES) cells are highly sensitive to environmental insults including DNA damaging agents, responding with high levels of apoptosis. To understand the response of human ES cells to DNA damage, we investigated the function of the ataxia telangiectasia mutated (ATM) DNA damage signaling pathway in response to γ‐irradiation. Here, we demonstrate for the first time in human ES cells that ATM kinase is phosphorylated and properly localized to the sites of DNA double‐strand breaks within 15 minutes of irradiation. Activation of ATM kinase resulted in phosphorylation of its downstream targets: Chk2, p53, and Nbs1. In contrast to murine ES cells, Chk2 and p53 were localized to the nucleus of irradiated human ES cells. We further show that irradiation resulted in a temporary arrest of the cell cycle at the G2, but not G1, phase. Human ES cells resumed cycling approximately 16 hours after irradiation, but had a fourfold higher incidence of aberrant mitotic figures compared to nonirradiated cells. Finally, we demonstrate an essential role of ATM in establishing G2 arrest since inhibition with the ATM‐specific inhibitor KU55933 resulted in abolishment of G2 arrest, evidenced by an increase in the number of cycling cells 2 hours after irradiation. In summary, these results indicate that human ES cells activate the DNA damage checkpoint, resulting in an ATM‐dependent G2 arrest. However, these cells re‐enter the cell cycle with prominent mitotic spindle defects. STEM CELLS 2009;27:1822–1835


Cell Cycle | 2005

ATM Activation in Normal Human Tissues and Testicular Cancer

Jirina Bartkova; Christopher J. Bakkenist; Ewa Rajpert-De Meyts; Niels E. Skakkebæk; Maxwell Sehested; Jiri Lukas; Michael B. Kastan; Jiri Bartek

The ATM kinase is a tumor suppressor and key regulator of biological responses to DNA damage. Cultured cells respond to genotoxic insults that induce DNA double-strand breaks by prompt activation of ATM through its autophosphorylation on serine 1981. However, whether ATM-S1981 becomes phosphorylated in vivo, for example during physiological processes that generate DSBs, is unknown. Here we produced phosphospecific monoclonal antibodies against S1981-phosphorylated ATM (pS-ATM), and applied them to immunohistochemical analyses of a wide range of normal human tissues and testicular tumors. Our data show that regardless of proliferation and differentiation, most human tissues contain only the S1981-nonphosphorylated, inactive form of ATM. In contrast, nuclear staining for pS-ATM was detected in subsets of bone-marrow lymphocytes and primary spermatocytes in the adult testes, cell types in which DSBs are generated during physiological V(D)J recombination and meiotic recombination, respectively. Among testicular germ-cell tumors, an aberrant constitutive pS-ATM was observed especially in embryonal carcinomas, less in seminomas, and only modestly in teratomas and the pre-invasive carcinoma-in-situ stage. Compared with pS-ATM, phosphorylated histone H2AX (?H2AX), another DNA damage marker and ATM substrate, was detected in a higher proportion of cancer cells, and also in normal fetal gonocytes, and a wider range of adult spermatocyte differentiation stages. Collectively, our results strongly support the physiological relevance of the recently proposed model of ATM autoactivation, and provide further evidence for constitutive activation of the DNA damage machinery during cancer development. The new tools characterized here should facilitate monitoring of ATM activation in clinical specimens, and help develop future treatment strategies.


Journal of Cell Science | 2012

Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress

Wei Qian; Serah Choi; Gregory A. Gibson; Simon C. Watkins; Christopher J. Bakkenist; Bennett Van Houten

Summary Mitochondrial fission and fusion cycles are integrated with cell cycle progression. In this paper, we demonstrate that the inhibition of mitochondrial fission protein Drp1 causes an unexpected delay in G2/M cell cycle progression and aneuploidy. In investigating the underlying molecular mechanism, we revealed that inhibiting Drp1 triggers replication stress, which is mediated by a hyperfused mitochondrial structure and unscheduled expression of cyclin E in the G2 phase. This persistent replication stress then induces an ATM-dependent activation of the G2 to M transition cell cycle checkpoint. Knockdown of ATR, an essential kinase in preventing replication stress, significantly enhanced DNA damage and cell death of Drp1-deficienct cells. Persistent mitochondrial hyperfusion also induces centrosomal overamplification and chromosomal instability, which are causes of aneuploidy. Analysis using cells depleted of mitochondrial DNA revealed that these events are not mediated by the defects in mitochondrial ATP production and reactive oxygen species (ROS) generation. Thus dysfunctional mitochondrial fission directly induces genome instability by replication stress, which then initiates the DNA damage response. Our findings provide a novel mechanism that contributes to the cellular dysfunction and diseases associated with altered mitochondrial dynamics.


Genes, Chromosomes and Cancer | 2007

Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma

Rahul A. Parikh; Jason S. White; Xin Huang; David W. Schoppy; Bora E. Baysal; Rajasekaran Baskaran; Christopher J. Bakkenist; William S. Saunders; Lih-Ching Hsu; Marjorie Romkes; Susanne M. Gollin

About 45% of head and neck squamous cell carcinomas (HNSCC) are characterized by amplification of chromosomal band 11q13. This amplification occurs by a breakage‐fusion‐bridge (BFB) cycle mechanism. The first step in the BFB cycle involves breakage and loss of distal 11q, from FRA11F (11q14.2) to 11qter. Consequently, numerous genes, including three critical genes involved in the DNA damage response pathway, MRE11A, ATM, and H2AFX are lost in the step preceding 11q13 amplification. We hypothesized that this partial loss of genes on distal 11q may lead to a diminished DNA damage response in HNSCC. Characterization of HNSCC using fluorescence in situ hybridization (FISH) revealed concurrent partial loss of MRE11A, ATM, and H2AFX in all four cell lines with 11q13 amplification and in four of seven cell lines without 11q13 amplification. Quantitative microsatellite analysis and loss of heterozygosity studies confirmed the distal 11q loss. FISH evaluation of a small series of HNSCC, ovarian, and breast cancers confirmed the presence of 11q loss in at least 60% of these tumors. All cell lines with distal 11q loss exhibited a diminished DNA damage response, as measured by a decrease in the size and number of γ‐H2AX foci and increased chromosomal instability following treatment with ionizing radiation. In conclusion, loss of distal 11q results in a defective DNA damage response in HNSCC. Distal 11q loss was also unexpectedly associated with reduced sensitivity to ionizing radiation. Although the literature attributes the poor prognosis in HNSCC to 11q13 gene amplification, our results suggest that distal 11q deletions may be an equally significant factor.


Journal of Cell Biology | 2012

Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice

Kenta Yamamoto; Yunyue Wang; Wenxia Jiang; Xiangyu Liu; Richard L. Dubois; Chyuan-Sheng Lin; Thomas Ludwig; Christopher J. Bakkenist; Shan Zha

Expression of a kinase-deficient ATM protein leads to severe genomic instability and embryonic lethality.


Cancer Research | 2004

Disappearance of the Telomere Dysfunction-Induced Stress Response in Fully Senescent Cells

Christopher J. Bakkenist; Rachid Drissi; Jing Wu; Michael B. Kastan; Jeffrey S. Dome

Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-γ nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-γ foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-γ focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-γ foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.

Collaboration


Dive into the Christopher J. Bakkenist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serah Choi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan H. Beumer

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason S. White

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge