Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Borgert is active.

Publication


Featured researches published by Christopher J. Borgert.


Toxicology Letters | 2013

Endocrine disruption: Fact or urban legend?

Gerhard J. Nohynek; Christopher J. Borgert; Daniel R. Dietrich

Endocrine disruptors (EDs) are substances that cause adverse health effects via endocrine-mediated mechanisms in an intact organism or its progeny or (sub) populations. Purported EDCs in personal care products include 4-MBC (UV filter) or parabens that showed oestrogenic activity in screening tests, although regulatory toxicity studies showed no adverse effects on reproductive endpoints. Hormonal potency is the key issue of the safety of EDCs. Oestrogen-based drugs, e.g. the contraceptive pill or the synthetic oestrogen DES, possess potencies up to 7 orders of magnitude higher than those of PCP ingredients; yet, in utero exposure to these drugs did not adversely affect fertility or sexual organ development of offspring unless exposed to extreme doses. Additive effects of EDs are unlikely due to the multitude of mechanisms how substances may produce a hormone-like activity; even after uptake of different substances with a similar mode of action, the possibility of additive effects is reduced by different absorption, metabolism and kinetics. This is supported by a number of studies on mixtures of chemical EDCs. Overall, despite of 20 years of research a human health risk from exposure to low concentrations of exogenous chemical substances with weak hormone-like activities remains an unproven and unlikely hypothesis.


Regulatory Toxicology and Pharmacology | 2011

Evaluation of EPA's Tier 1 Endocrine Screening Battery and recommendations for improving the interpretation of screening results.

Christopher J. Borgert; Ellen Mihaich; Terry F. Quill; Mary Sue Marty; Steven L. Levine; Richard A. Becker

EPAs Endocrine Disruptor Screening Program (EDSP) was implemented in 2009-2010 with the issuance of test orders requiring manufacturers and registrants of 58 pesticide active ingredients and nine pesticide inert/high production volume chemicals to evaluate the potential of these chemicals to interact with the estrogen, androgen and thyroid hormone systems. The required endocrine screening will be conducted over the next 2-3years. Based on estimates of the impacted sectors, costs are at least


Environmental Health Perspectives | 2012

Information Quality in Regulatory Decision Making: Peer Review versus Good Laboratory Practice

Lynn S. McCarty; Christopher J. Borgert; Ellen Mihaich

750,000-


Human and Ecological Risk Assessment | 2001

Evaluating Chemical Interaction Studies for Mixture Risk Assessment

Christopher J. Borgert; Bertram Price; Christopher S. Wells; S Glenn

1,000,000 per substance if all of the Tier 1 assays must be conducted. The screening will entail evaluation of responses in EPAs Tier 1 Endocrine Screening Battery (EDSP ESB), consisting of 11 distinct in vitro and in vivo assays. We reviewed the details of each test method and describe the critical factors integral to the design and conduct of the EDSP ESB assays as well as the limitations related to specificity and sensitivity. We discuss challenges to evaluating each assay, identify significant shortcomings, and make recommendations to enhance interpretation of results. Factors that affect the length of time necessary to complete the EDSP ESB for any particular substance are presented, and based on the overall analysis, we recommend a sequence for running the EDSP ESB assays. It is imperative that a structured, systematic weight of evidence framework is promptly developed, subjected to peer review and adopted. This will help to ensure an objective analysis of the results of the required EDSP screening, consistent integration of results across the EDSP ESB assays, and consistent decision making as to whether subsequent testing for adverse effects is needed. Based upon the limitations of the current EPA EDSP ESB, we concur with the Agencys Scientific Advisory Panels recommendation that after the initial set of substances has been screened, the EDSP ESB should pause so that the results can be fully analyzed to determine the value of the existing assays. After this analysis, assays that are unnecessarily redundant or that lack endocrine specificity should be eliminated and if necessary, replaced by new or revised screens that are more mechanistically specific, rapid, reliable, and cost effective.


Birth Defects Research Part B-developmental and Reproductive Toxicology | 2014

Relevance Weighting of Tier 1 Endocrine Screening Endpoints by Rank Order

Christopher J. Borgert; Leah D. Stuchal; Ellen Mihaich; Richard A. Becker; Karin S. Bentley; John M. Brausch; Katie Coady; David R. Geter; Elliot Gordon; Patrick D. Guiney; Frederick G. Hess; Catherine M. Holmes; Matthew J. LeBaron; Steve Levine; Sue Marty; Sandeep Mukhi; Barbara H. Neal; Lisa Ortego; David Saltmiras; Suzanne I. Snajdr; Jane Staveley; Abraham Tobia

Background: There is an ongoing discussion on the provenance of toxicity testing data regarding how best to ensure its validity and credibility. A central argument is whether journal peer-review procedures are superior to Good Laboratory Practice (GLP) standards employed for compliance with regulatory mandates. Objective: We sought to evaluate the rationale for regulatory decision making based on peer-review procedures versus GLP standards. Method: We examined pertinent published literature regarding how scientific data quality and validity are evaluated for peer review, GLP compliance, and development of regulations. Discussion: Some contend that peer review is a coherent, consistent evaluative procedure providing quality control for experimental data generation, analysis, and reporting sufficient to reliably establish relative merit, whereas GLP is seen as merely a tracking process designed to thwart investigator corruption. This view is not supported by published analyses pointing to subjectivity and variability in peer-review processes. Although GLP is not designed to establish relative merit, it is an internationally accepted quality assurance, quality control method for documenting experimental conduct and data. Conclusions: Neither process is completely sufficient for establishing relative scientific soundness. However, changes occurring both in peer-review processes and in regulatory guidance resulting in clearer, more transparent communication of scientific information point to an emerging convergence in ensuring information quality. The solution to determining relative merit lies in developing a well-documented, generally accepted weight-of-evidence scheme to evaluate both peer-reviewed and GLP information used in regulatory decision making where both merit and specific relevance inform the process.


Regulatory Toxicology and Pharmacology | 2013

Potency matters: Thresholds govern endocrine activity ☆

Christopher J. Borgert; Stephen P. Baker; John C. Matthews

We describe a set of criteria to evaluate the quality of data and interpretations in chemical interaction studies. These criteria reflect the consensus of the literature on interaction analysis developed over decades of research in pharmacology, toxicology, and biometry; address common pitfalls in published interaction studies; and can be easily applied to common methods of interaction analysis. The criteria apply broadly to interaction data for drugs, pesticides, industrial chemicals, food additives, and natural products and are intended to assist risk assessors who must evaluate interaction studies for use in component-based mixture risk assessments. The criteria may also assist researchers interested in conducting interaction studies to inform mixture risk assessment. The criteria are also intended to serve larger scientific goals, including increasing the repeatability of results obtained in chemical interaction studies, enhancing the reliability of conclusions drawn from interaction data, providing greater consistency of interpretations among various analysts, and decreasing uncertainty in using interaction data in risk assessments. We describe the basis for each criterion and demonstrate their utility by using them to evaluate interaction studies from the recent toxicological and pharmacological literature, which serve as examples of different types of data sets that the risk assessor may encounter.


Critical Reviews in Toxicology | 2012

A critique of the European Commission Document, “State of the Art Assessment of Endocrine Disrupters”

Lorenz R. Rhomberg; Julie E. Goodman; Warren G. Foster; Christopher J. Borgert; Glen Van Der Kraak

Weight of evidence (WoE) approaches are recommended for interpreting various toxicological data, but few systematic and transparent procedures exist. A hypothesis-based WoE framework was recently published focusing on the U.S. EPAs Tier 1 Endocrine Screening Battery (ESB) as an example. The framework recommends weighting each experimental endpoint according to its relevance for deciding eight hypotheses addressed by the ESB. Here we present detailed rationale for weighting the ESB endpoints according to three rank ordered categories and an interpretive process for using the rankings to reach WoE determinations. Rank 1 was assigned to in vivo endpoints that characterize the fundamental physiological actions for androgen, estrogen, and thyroid activities. Rank 1 endpoints are specific and sensitive for the hypothesis, interpretable without ancillary data, and rarely confounded by artifacts or nonspecific activity. Rank 2 endpoints are specific and interpretable for the hypothesis but less informative than Rank 1, often due to oversensitivity, inclusion of narrowly context-dependent components of the hormonal system (e.g., in vitro endpoints), or confounding by nonspecific activity. Rank 3 endpoints are relevant for the hypothesis but only corroborative of Ranks 1 and 2 endpoints. Rank 3 includes many apical in vivo endpoints that can be affected by systemic toxicity and nonhormonal activity. Although these relevance weight rankings (WREL ) necessarily involve professional judgment, their a priori derivation enhances transparency and renders WoE determinations amenable to methodological scrutiny according to basic scientific premises, characteristics that cannot be assured by processes in which the rationale for decisions is provided post hoc.


Human and Ecological Risk Assessment | 2002

Assessing Toxicity of Mixtures: The Search for Economical Study Designs

Bertram Price; Christopher J. Borgert; Christopher S. Wells; Glenn S. Simon

Whether thresholds exist for endocrine active substances and for endocrine disrupting effects of exogenous chemicals has been posed as a question for regulatory policy by the European Union. This question arises from a concern that the endocrine system is too complex to allow estimations of safe levels of exposure to any chemical with potential endocrine activity, and a belief that any such chemical can augment, retard, or disrupt the normal background activity of endogenous hormones. However, vital signaling functions of the endocrine system require it to continuously discriminate the biological information conveyed by potent endogenous hormones from a more concentrated background of structurally similar, endogenous molecules with low hormonal potential. This obligatory ability to discriminate important hormonal signals from background noise can be used to define thresholds for induction of hormonal effects, without which normal physiological functions would be impossible. From such thresholds, safe levels of exposure can be estimated. This brief review highlights how the fundamental principles governing hormonal effects - affinity, efficacy, potency, and mass action - dictate the existence of thresholds and why these principles also define the potential that exogenous chemicals might have to interfere with normal endocrine functioning.


Integrated Environmental Assessment and Management | 2017

Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

Peter Matthiessen; Gerald T. Ankley; Ronald C. Biever; Poul Bjerregaard; Christopher J. Borgert; Kristin E. Brugger; Amy Blankinship; Janice E. Chambers; Katherine Coady; Lisa A. Constantine; Zhichao Dang; Nancy D. Denslow; David A. Dreier; Steve Dungey; L. Earl Gray; Melanie Gross; Patrick D. Guiney; Markus Hecker; Henrik Holbech; Taisen Iguchi; Sarah M. Kadlec; Natalie K. Karouna-Renier; Ioanna Katsiadaki; Yukio Kawashima; Werner Kloas; Henry O. Krueger; Anu Kumar; Laurent Lagadic; Annegaaike Leopold; Steven L. Levine

In this commentary, we critique a recently finalized document titled “State of the Art Assessment of Endocrine Disrupters” (SOA Assessment). The SOA Assessment was commissioned by the European Union Directorate-General for the Environment to provide a basis for developing scientific criteria for identifying endocrine disruptors and reviewing and possibly revising the European Community Strategy on Endocrine Disrupters. In our view, the SOA Assessment takes an anecdotal approach rather than attempting a comprehensive assessment of the state of the art or synthesis of current knowledge. To do the latter, the document would have had to (i) distinguish between apparent associations of outcomes with exposure and the inference of an endocrine-disruption (ED) basis for those outcomes; (ii) constitute a complete and unbiased survey of new literature since 2002 (when the WHO/IPCS document, “Global Assessment of the State-of-the-Science of Endocrine Disruptors” was published); (iii) consider strengths and weaknesses and issues in interpretation of the cited literature; (iv) follow a weight-of-evidence methodology to evaluate evidence of ED; (v) document the evidence for its conclusions or the reasoning behind them; and (vi) present the evidence for or reasoning behind why conclusions that differ from those drawn in the 2002 WHO/IPCS document need to be changed. In its present form, the SOA Assessment fails to provide a balanced and critical assessment or synthesis of literature relevant to ED. We urge further evidence-based evaluations to develop the needed scientific basis to support future policy decisions.


Human and Ecological Risk Assessment | 2004

Chemical Mixtures: An Unsolvable Riddle?

Christopher J. Borgert

Toxicity screening and testing of chemical mixtures for interaction effects is a potentially onerous task due to the sheer volume of combinations that may be of interest. We propose an economical approach for assessing the interaction effects of chemical mixtures that is guided by risk-based considerations. We describe the statistical underpinnings of the approach and use examples from the published literature to illustrate concepts of local versus global mixture assessment. Our approach employs a sequential testing procedure to find the dose combinations that define the dose boundary for a specified acceptable risk level. The first test is conducted for a dose combination consisting of the acceptable doses of each individual chemical in the mixture. The outcome of this first test indicates the dose combination that should be tested next. Continuing in this manner, the boundary of dose combinations for the specified acceptable risk level can be approximated based on measurements for relatively few dose combinations. Dose combinations on one side of the boundary would have responses less than the response associated with the acceptable risk level, and dose combinations on the boundary would be acceptable levels of exposure for the mixture.

Collaboration


Dive into the Christopher J. Borgert's collaboration.

Top Co-Authors

Avatar

Richard A. Becker

American Chemistry Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge