Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Brigham is active.

Publication


Featured researches published by Christopher J. Brigham.


Journal of Bacteriology | 2010

Elucidation of β-Oxidation Pathways in Ralstonia eutropha H16 by Examination of Global Gene Expression

Christopher J. Brigham; Charles F. Budde; Jason W. Holder; Qiandong Zeng; Alison E. Mahan; Chokyun Rha; Anthony J. Sinskey

Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid β-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single β-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.


Biotechnology and Bioengineering | 2012

Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations.

Sebastian L. Riedel; Johannes Bader; Christopher J. Brigham; Charles F. Budde; Zainal Abidin Mohd Yusof; Chokyun Rha; Anthony J. Sinskey

Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA‐based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB‐co‐HHx) when grown on plant oils. This R. eutropha strain was grown to high cell densities using batch, extended batch, and fed batch fermentation strategies, in which PHA accumulation was triggered by nitrogen limitation. While extended batch culture produced more biomass and PHA than batch culture, fed batch cultivation was shown to produce the highest levels of biomass and PHA. The highest titer achieved was over 139 g/L cell dry weight (CDW) of biomass with 74% of CDW as PHA containing 19mol% HHx. Our data suggest that the fermentation process is scalable with a space time yield (STY) better than 1 g PHA/L/h. The achieved biomass concentration and PHA yield are among the highest reported for the fermentation of recombinant R. eutropha strains producing P(HB‐co‐HHx). Biotechnol. Bioeng. 2012;109: 74–83.


Bioresource Technology | 2012

Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator

Yoke-Ming Wong; Christopher J. Brigham; Chokyun Rha; Anthony J. Sinskey; Kumar Sudesh

The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.


Applied and Environmental Microbiology | 2012

Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16

Christopher J. Brigham; Daan R. Speth; Chokyun Rha; Anthony J. Sinskey

ABSTRACT Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor σ54 increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with dl-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.


International Journal of Biotechnology for Wellness Industries | 2012

Applications of Polyhydroxyalkanoates in the Medical Industry

Christopher J. Brigham; Anthony J. Sinskey

The bio-based, biodegradable family of polymers, polyhydroxyalkanoates (PHA), is an attractive candidate for an environmentally friendly replacement of petroleum-based plastics in many applications. In the past decade, many groups have examined the biodegradability and biocompatibility of PHA in cell culture systems or in an animal host. Findings suggest that PHA is a suitable material for fabrication of resorbable medical devices, such as sutures, meshes, implants, and tissue engineering scaffolds. The degradation kinetics of some PHA polymers is also suggestive of drug release applications. In this review, we examine the progress, potential applications, challenges and outlook in the medical polyhydroxyalkanoate field.


Journal of Microbial & Biochemical Technology | 2011

Bacterial Carbon Storage to Value Added Products

Christopher J. Brigham; Kazuhiko Kurosawa; Chokyun Rha; Anthony J. Sinskey

Microorganisms have evolved different systems for storing carbon during times of stress. In the cell’s natural environment, the stored carbon can then be utilized for growth when other nutrients are in better supply. Storage of carbon and other nutrients is ubiquitous throughout the prokaryotic and eukaryotic domains of life. These carbon storage molecules have great industrial importance. They can be useful as value-added products, as either biopolymers or biofuels, and cells are grown in large quantities and these compounds are harvested, usually as a replacement for a petroleum-based product. Nowadays, entire industries have been generated based on the production and utilization of these compounds. We focus on two bacteria that could be considered paradigms of their particular carbon storage strategy: Ralstonia eutropha and Rhodococcus opacus . R. eutropha has been well-studied as a polyhydroxyalkanoate (bioplastic) producer and R. opacus is a model bacterium for high yield triacylglycerol (TAG) production for biofuels. Both species produce carbon storage molecules that can potentially diminish our reliance on fossil-based petroleum. However, in both cases, there are challenges that must be overcome before profitable production schemes are established using these organisms. We explore the previous and current works to address these challenges in this review.


Applied and Environmental Microbiology | 2011

Characterization of the Highly Active Polyhydroxyalkanoate Synthase of Chromobacterium sp. Strain USM2

Kesaven Bhubalan; Jo-Ann Chuah; Fumi Shozui; Christopher J. Brigham; Seiichi Taguchi; Anthony J. Sinskey; Chokyun Rha; Kumar Sudesh

ABSTRACT The synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp. USM2 (PhaC Cs ). PhaC Cs showed the ability to utilize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) monomers in PHA biosynthesis. An in vitro assay of recombinant PhaC Cs expressed in Escherichia coli showed that its polymerization of 3-hydroxybutyryl-coenzyme A activity was nearly 8-fold higher (2,462 ± 80 U/g) than that of the synthase from the model strain C. necator (307 ± 24 U/g). Specific activity using a Strep2-tagged, purified PhaC Cs was 238 ± 98 U/mg, almost 5-fold higher than findings of previous studies using purified PhaC from C. necator. Efficient poly(3-hydroxybutyrate) [P(3HB)] accumulation in Escherichia coli expressing PhaC Cs of up to 76 ± 2 weight percent was observed within 24 h of cultivation. To date, this is the highest activity reported for a purified PHA synthase. PhaC Cs is a naturally occurring, highly active PHA synthase with superior polymerizing ability.


Biotechnology and Bioengineering | 2013

Recovery of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from Ralstonia eutropha cultures with non‐halogenated solvents

Sebastian L. Riedel; Christopher J. Brigham; Charles F. Budde; Johannes Bader; Chokyun Rha; Ulf Stahl; Anthony J. Sinskey

Reduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA‐based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate‐co‐hydroxyhexanoate) (P(HB‐co‐HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non‐halogenated solvents. Several non‐halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer. Isoamyl alcohol was found to be not suitable for extraction of polymer. All PHA extractions were performed from both dry and wet cells at volumes ranging from 2 mL to 3 L using a PHA to solvent ratio of 2% (w/v). Ethyl acetate showed both high recovery levels and high product purities (up to 99%) when using dry cells as starting material. Recovery from wet cells, however, eliminates a biomass drying step during the downstream process, potentially saving time and cost. When wet cells were used, methyl isobutyl ketone (MIBK) was shown to be the most favorable solvent for PHA recovery. Purities of up to 99% and total recovery yields of up to 84% from wet cells were reached. During polymer recovery with either MIBK or butyl acetate, fractionation of the extracted PHA occurred, based on the HHx content of the polymer. PHA with higher HHx content (17–30 mol%) remained completely in solution, while polymer with a lower HHx content (11–16 mol%) formed a gel‐like phase. All PHA in solution could be precipitated by addition of threefold volumes of n‐hexane or n‐heptane to unfiltered PHA solutions. Effective recycling of the solvents in this system is predicted due to the large differences in the boiling points between solvent and precipitant. Our findings show that two non‐halogenated solvents are good candidates to replace halogenated solvents like chloroform for recovery of high quality PHA. Biotechnol. Bioeng. 2013; 110: 461–470.


Biotechnology Letters | 2011

Improved detergent-based recovery of polyhydroxyalkanoates (PHAs)

Yung-Hun Yang; Christopher J. Brigham; Laura B. Willis; Chokyun Rha; Anthony J. Sinskey

Extracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell. Detergents such as linear alkylbenzene sulfonic acid (LAS-99) produced a high yield of high purity polymer, and less detergent was needed compared to the amount of SDS to produce comparable yields. LAS-99 also has the advantage of being biodegradable and environmentally safe. Chemical extraction of PHA with detergents could potentially minimize or eliminate the need to use harsh organic solvents, thus making industrial PHA production a cleaner technology process.


Journal of Biotechnology | 2015

Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats

Sebastian L. Riedel; Stefan Jahns; Steven Koenig; Martina C.E. Bock; Christopher J. Brigham; Johannes Bader; Ulf Stahl

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyesters considered as alternatives to petroleum-based plastics. Ralstonia eutropha is a model organism for PHA production. Utilizing industrially rendered waste animal fats as inexpensive carbon feedstocks for PHA production is demonstrated here. An emulsification strategy, without any mechanical or chemical pre-treatment, was developed to increase the bioavailability of solid, poorly-consumable fats. Wild type R. eutropha strain H16 produced 79-82% (w/w) polyhydroxybutyrate (PHB) per cell dry weight (CDW) when cultivated on various fats. A productivity of 0.3g PHB/(L × h) with a total PHB production of 24 g/L was achieved using tallow as carbon source. Using a recombinant strain of R. eutropha that produces poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)], 49-72% (w/w) of PHA per CDW with a HHx content of 16-27 mol% were produced in shaking flask experiments. The recombinant strain was grown on waste animal fat of the lowest quality available at lab fermenter scale, resulting in 45 g/L CDW with 60% (w/w) PHA per CDW and a productivity of 0.4 g PHA/(L × h). The final HHx content of the polymer was 19 mol%. The use of low quality waste animal fats as an inexpensive carbon feedstock exhibits a high potential to accelerate the commercialization of PHAs.

Collaboration


Dive into the Christopher J. Brigham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chokyun Rha

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jingnan Lu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudia S. Gai

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Bader

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Sebastian L. Riedel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Abdulrahman A. Kehail

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar

Amanda Bernardi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge