Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Campo is active.

Publication


Featured researches published by Christopher J. Campo.


Nature | 2011

A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b

Nikku Madhusudhan; Joseph E. Harrington; Kevin B. Stevenson; Sarah Nymeyer; Christopher J. Campo; P. J. Wheatley; Drake Deming; Jasmina Blecic; Ryan A. Hardy; Nate B. Lust; D. R. Anderson; Andrew Collier-Cameron; Christopher B. T. Britt; William C. Bowman; L. Hebb; C. Hellier; P. F. L. Maxted; Don Pollacco; Richard G. West

The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O ≥ 1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T > 2,500 K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day–night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.


Monthly Notices of the Royal Astronomical Society | 2011

Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit

D. R. Anderson; A. M. S. Smith; Audrey Lanotte; Travis S. Barman; A. Collier Cameron; Christopher J. Campo; Michaël Gillon; Joseph E. Harrington; C. Hellier; P. F. L. Maxted; D. Queloz; A. H. M. J. Triaud; P. J. Wheatley

We report the detection of thermal emission at 4.5 and 8 mu m from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial-velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0R(Jup), which is 0.2R(Jup) larger than any other known planet and 0.7R(Jup) larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 mu m brightness temperatures of 1881 +/- 50 and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.


The Astrophysical Journal | 2011

On the Orbit of Exoplanet WASP-12b

Christopher J. Campo; Joseph E. Harrington; Ryan A. Hardy; Kevin B. Stevenson; Sarah Nymeyer; Darin Ragozzine; Nate B. Lust; D. R. Anderson; Andrew Collier-Cameron; Jasmina Blecic; Christopher B. T. Britt; William C. Bowman; P. J. Wheatley; Thomas J. Loredo; Drake Deming; L. Hebb; C. Hellier; P. F. L. Maxted; Don Pollaco; Richard G. West

We observed two secondary eclipses of the exoplanet WASP-12b using the Infrared Array Camera on the Spitzer Space Telescope. The close proximity of WASP-12b to its G-type star results in extreme tidal forces capable of inducing apsidal precession with a period as short as a few decades. This precession would be measurable if the orbit had a significant eccentricity, leading to an estimate of the tidal Love number and an assessment of the degree of central concentration in the planetary interior. An initial ground-based secondary-eclipse phase reported by Lopez-Morales et al. (0.510 ± 0.002) implied eccentricity at the 4.5σ level. The spectroscopic orbit of Hebb et al. has eccentricity 0.049 ± 0.015, a 3σ result, implying an eclipse phase of 0.509 ± 0.007. However, there is a well-documented tendency of spectroscopic data to overestimate small eccentricities. Our eclipse phases are 0.5010 ± 0.0006 (3.6 and 5.8 μm) and 0.5006 ± 0.0007 (4.5 and 8.0 μm). An unlikely orbital precession scenario invoking an alignment of the orbit during the Spitzer observations could have explained this apparent discrepancy, but the final eclipse phase of Lopez-Morales et al. (0.510 ±+0.007 –0.006) is consistent with a circular orbit at better than 2σ. An orbit fit to all the available transit, eclipse, and radial-velocity data indicates precession at <1σ; a non-precessing solution fits better. We also comment on analysis and reporting for Spitzer exoplanet data in light of recent re-analyses.


The Astrophysical Journal | 2011

SPITZER SECONDARY ECLIPSES OF WASP-18b

Sarah Nymeyer; Joseph E. Harrington; Ryan A. Hardy; Kevin B. Stevenson; Christopher J. Campo; Nikku Madhusudhan; Andrew Collier-Cameron; Thomas J. Loredo; Jasmina Blecic; William C. Bowman; Christopher B. T. Britt; Patricio Cubillos; C. Hellier; Michaël Gillon; P. F. L. Maxted; L. Hebb; P. J. Wheatley; Don Pollacco; D. R. Anderson

The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzers Infrared Array Camera in the 3.6 ?m and 5.8 ?m bands on 2008 December 20, and in the 4.5 ?m and 8.0 ?m bands on 2008 December 24. We report eclipse depths of 0.30% ? 0.02%, 0.39% ? 0.02%, 0.37% ? 0.03%, 0.41% ? 0.02%, and brightness temperatures of 3100 ? 90, 3310 ? 130, 3080 ? 140, and 3120 ? 110?K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered?as hot as an M-class star. The planets pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day side to the night side of the planet.


Monthly Notices of the Royal Astronomical Society | 2013

Thermal emission at 3.6–8 μm from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star

D. R. Anderson; A. M. S. Smith; Nikku Madhusudhan; P. J. Wheatley; A. Collier Cameron; C. Hellier; Christopher J. Campo; Michaël Gillon; Joseph E. Harrington; P. F. L. Maxted; Don Pollacco; D. Queloz; B. Smalley; A. H. M. J. Triaud; Richard G. West

We report detection of thermal emission from the exoplanet WASP-19b at 3.6, 4.5, 5.8 and 8.0 µm. We used the InfraRed Array Camera on the Spitzer Space Telescope to observe two occultations of WASP-19b by its host star. We combine our new detections with previous measurements of WASP-19b’s emission at 1.6 and 2.09 µm to construct a spectral energy distribution of the planet’s dayside atmosphere. By comparing this with model-atmosphere spectra, we find that the dayside atmosphere of WASP-19b lacks a strong temperature inversion. As WASP-19 is an active star (logR ′ = 4.50± 0.03), this finding supports the hypothesis of Knutson, Howard & Isaacson (2010) that inversions are suppressed in hot Jupiters orbiting active stars. The available data are unable to differentiate between a carbon-rich and an oxygen-rich atmosphere.


The Astrophysical Journal | 2013

Thermal Emission of WASP-14b Revealed with Three Spitzer Eclipses

Jasmina Blecic; Joseph E. Harrington; Nikku Madhusudhan; Kevin B. Stevenson; Ryan A. Hardy; Patricio Cubillos; Matthew Hardin; Christopher J. Campo; William C. Bowman; Sarah Nymeyer; Thomas J. Loredo; D. R. Anderson; P. F. L. Maxted

Exoplanet WASP-14b is a highly irradiated, transiting hot Jupiter. Joshi et al. calculate an equilibrium temperature (T eq) of 1866 K for zero albedo and reemission from the entire planet, a mass of 7.3 ± 0.5 Jupiter masses (M J), and a radius of 1.28 ± 0.08 Jupiter radii (R J). Its mean density of 4.6 g cm-3 is one of the highest known for planets with periods less than three days. We obtained three secondary eclipse light curves with the Spitzer Space Telescope. The eclipse depths from the best jointly fit model are 0.224% ± 0.018% at 4.5 μm and 0.181% ± 0.022% at 8.0 μm. The corresponding brightness temperatures are 2212 ± 94 K and 1590 ± 116 K. A slight ambiguity between systematic models suggests a conservative 3.6 μm eclipse depth of 0.19% ± 0.01% and brightness temperature of 2242 ± 55 K. Although extremely irradiated, WASP-14b does not show any distinct evidence of a thermal inversion. In addition, the present data nominally favor models with day-night energy redistribution less than ~30%. The current data are generally consistent with oxygen-rich as well as carbon-rich compositions, although an oxygen-rich composition provides a marginally better fit. We confirm a significant eccentricity of e = 0.087 ± 0.002 and refine other orbital parameters.


The Astrophysical Journal | 2012

Two nearby sub-Earth-sized exoplanet candidates in the GJ 436 system

Kevin B. Stevenson; Joseph E. Harrington; Nate B. Lust; Nikole K. Lewis; Guillaume Montagnier; Julianne I. Moses; Channon Visscher; Jasmina Blecic; Ryan A. Hardy; Patricio Cubillos; Christopher J. Campo


The Astrophysical Journal | 2013

WASP-8b: Characterization of a Cool and Eccentric Exoplanet with Spitzer

Patricio Cubillos; Joseph E. Harrington; Nikku Madhusudhan; Kevin B. Stevenson; Ryan A. Hardy; Jasmina Blecic; D. R. Anderson; Matthew Hardin; Christopher J. Campo


Archive | 2011

Carbon-rich Planets

Nikku Madhusudhan; Joseph E. Harrington; Kevin B. Stevenson; Sarah Nymeyer; Christopher J. Campo; P. J. Wheatley; Drake Deming; Jasmina Blecic; Ryan A. Hardy; Nate B. Lust; David A. Anderson; Andrew Collier-Cameron; Leslie Hebb; C. Hellier; P. F. L. Maxted


Archive | 2011

The Orbit and Atmosphere of Exoplanet WASP-12b Revealed by Spitzer Secondary Eclipses

Joseph E. Harrington; Nikku Madhusudhan; Ryan A. Hardy; Christopher J. Campo; Kevin B. Stevenson; Sarah Nymeyer; Darin Ragozzine; Nate B. Lust; D. R. Anderson; Andrew Collier-Cameron; Jasmina Blecic; Christopher B. T. Britt; William C. Bowman; P. J. Wheatley; Thomas J. Loredo; Drake Deming; L. Hebb; C. Hellier; P. F. L. Maxted; Don Pollaco; Richard G. West

Collaboration


Dive into the Christopher J. Campo's collaboration.

Top Co-Authors

Avatar

Joseph E. Harrington

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Ryan A. Hardy

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Kevin B. Stevenson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Sarah Nymeyer

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jasmina Blecic

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

William C. Bowman

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge