Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Janke is active.

Publication


Featured researches published by Christopher J. Janke.


Separation Science and Technology | 2013

Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs

Jungseung Kim; Costas Tsouris; Richard T. Mayes; Yatsandra Oyola; Tomonori Saito; Christopher J. Janke; Sheng Dai; Erich Schneider; Darshan Sachde

The recovery of uranium (U) from seawater has been investigated for over six decades in efforts to secure uranium sources for future energy production. The majority of the research activities have focused on inorganic materials, chelating polymers, and nanomaterials. Previous studies of uranium adsorption from aqueous solutions, mainly seawater, are reviewed here with a focus on various adsorbent materials, adsorption parameters, adsorption characterization, and marine studies. Continuous progress has been made over several decades, with adsorbent loadings approaching 3.2 mg U/g adsorbent in equilibrium with seawater. Further research is needed to improve first, the viability including improved capacity, selectivity, and kinetics, and second, the sorbent regeneration for multicycle use. An overview of the status of the uranium adsorption technology is provided and future research needs to make this technology commercially competitive are discussed.


Journal of Materials Chemistry | 2014

Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization

Tomonori Saito; Suree Brown; Sabornie Chatterjee; Jungseung Kim; Costas Tsouris; Richard T. Mayes; Li-Jung Kuo; Gary A. Gill; Yatsandra Oyola; Christopher J. Janke; Sheng Dai

A novel adsorbent preparation method using atom-transfer radical polymerization (ATRP) combined with radiation-induced graft polymerization (RIGP) was developed to synthesize an adsorbent for uranium recovery from seawater. The ATRP method allowed a much higher degree of grafting on the adsorbent fibers (595–2818%) than that allowed by RIGP alone. The adsorbents were prepared with varied compositions of amidoxime groups and hydrophilic acrylate groups. The successful preparation revealed that both ligand density and hydrophilicity were critical for optimal performance of the adsorbents. Adsorbents synthesized in this study showed a relatively high performance (141–179 mg g−1 at 49–62% adsorption) in laboratory screening tests using a uranium concentration of ∼6 ppm. This performance is much higher than that of known commercial adsorbents. However, actual seawater experiment showed impeded performance compared to the recently reported high-surface-area-fiber adsorbents, due to slow adsorption kinetics. The impeded performance motivated the investigation of the effect of hydrophilic block addition on the graft chain terminus. The addition of a hydrophilic block on the graft chain terminus nearly doubled the uranium adsorption capacity in seawater, from 1.56 mg g−1 to 3.02 mg g−1. The investigation revealed the importance of polymer chain conformation, in addition to the ligand and hydrophilic group ratio, for advanced adsorbent synthesis for uranium recovery from seawater.


Dalton Transactions | 2014

Carbonate–H2O2 leaching for sequestering uranium from seawater

Horng-Bin Pan; Weisheng Liao; Chien M. Wai; Yatsandra Oyola; Christopher J. Janke; Guoxin Tian; Linfeng Rao

Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.


RSC Advances | 2015

Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater

Horng-Bin Pan; Li-Jung Kuo; Jordana R. Wood; Jonathan E. Strivens; Gary A. Gill; Christopher J. Janke; Chien M. Wai

Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. Spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80 °C) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 h) at 80 °C, physical damage to the adsorbent material occurs which can lead to a significant reduction in the adsorbents uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering the KOH conditioning temperature. For high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80 °C or 1 h of conditioning in 2.5% KOH at 60 °C appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. The use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning the amidoxime-based sorbents with minimal loss of adsorption capacity (≤7%).


RSC Advances | 2013

A renewable HSO3/H2PO3-grafted polyethylene fiber catalyst: an efficient heterogeneous catalyst for the synthesis of 5-hydroxymethylfurfural from fructose in water

Chengcheng Tian; Yatsandra Oyola; Kimberly M. Nelson; Song-Hai Chai; Xiang Zhu; J. Chris Bauer; Christopher J. Janke; Suree Brown; Yanglong Guo; Sheng Dai

Irradiation-induced co-grafting of acrylonitrile and vinylsulfonic acid (or vinylphosphonic acid) monomers on polyethylene fiber was studied for the heterogeneous catalysis of fructose dehydration into 5-hydroxymethylfurfural (HMF) solely in water. The acidic co-polymer exhibited excellent catalytic activity and maintained a high yield after being regenerated. We attribute these catalytic properties to a branched environment created by grafted chains, hydrophilic enough to interact with fructose in water but collectively dense enough to form a unique local phase mimicking organic solvents.


Archive | 2009

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends

Steven J Pawel; Michael D. Kass; Christopher J. Janke

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.


Archive | 2014

Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

Christopher J. Janke; Sadananda Das; Yatsandra Oyola; Richard T. Mayes; Tomonori Saito; Suree Brown; Gary A. Gill; Li-Jung Kuo; Jordana R. Wood

This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.


Archive | 2015

Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

Christopher J. Janke; Sadananda Das; Yatsandra Oyola; Richard T. Mayes; Gary A. Gill; Li-Jung Kuo; Jordana R. Wood

This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. The braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.


Archive | 1997

Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

Christopher J. Janke; Dave Howell; Robert E. Norris

The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.


Industrial & Engineering Chemistry Research | 2014

Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment

Jungseung Kim; Costas Tsouris; Yatsandra Oyola; Christopher J. Janke; Richard T. Mayes; Sheng Dai; Gary A. Gill; Li Jung Kuo; Jordana R. Wood; Key Young Choe; Erich Schneider; Harry Lindner

Collaboration


Dive into the Christopher J. Janke's collaboration.

Top Co-Authors

Avatar

Richard T. Mayes

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Dai

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Costas Tsouris

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jordana R. Wood

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yatsandra Oyola

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael D. Kass

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Suree Brown

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge