Christopher J. McCormick
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. McCormick.
Journal of Biological Chemistry | 2003
Andrew Macdonald; Katherine Crowder; Andrew Street; Christopher J. McCormick; Kalle Saksela; Mark Harris
The hepatitis C virus nonstructural 5A (NS5A) protein is a pleiotropic phosphoprotein that has been shown to associate with a wide variety of cellular signaling proteins. Of particular interest is the observation that a highly conserved C-terminal Class II polyproline motif within NS5A mediated association with the Src homology 3 domains of members of the Src family of tyrosine kinases and the mitogenic adaptor protein Grb2 (A. Macdonald, K. Crowder, A. Street, C. McCormick, and M. Harris, submitted for publication). In this study, we analyzed the consequences of NS5A expression on mitogenic signaling pathways within a variety of cell lines. Utilizing a transient luciferase reporter system, we observed that NS5A inhibited the activity of the mitogenic and stress-activated transcription factor activating protein-1 (AP1). This inhibition was dependent upon a Class II polyproline motif within NS5A. Using a combination of dominant active and negative mutants of components of the MAPK signaling pathways, selective inhibitors, together with immunoblotting with phospho-specific and phosphorylation-independent antibodies, we determined the signaling pathways targeted by NS5A to inhibit AP1. These studies demonstrated that in both stable NS5A-expressing cells and Huh-7-derived cells harboring subgenomic hepatitis C virus (HCV) replicons, this inhibition was mediated through the ERK signaling pathway. Importantly, a comparable inhibition of AP1 reporter activity was observed in hepatocyte-derived cell lines transduced with a baculovirus vector driving expression of full-length HCV polyprotein. In conclusion, these data strongly suggest a role for the NS5A protein in the perturbation of mitogenic signaling pathways in HCV-infected hepatocytes.
Journal of Clinical Investigation | 1997
Christopher J. McCormick; Alister Craig; David J. Roberts; Chris Newbold; Anthony R. Berendt
We have compared the adhesion of Plasmodium falciparum-infected erythrocytes to human dermal microvascular endothelial cells (HDMEC) and human umbilical vein endothelial cells (HUVEC) and have assessed the relative roles of the receptors CD36 and intercellular adhesion molecule-1 (ICAM-1). HUVEC (a cell line that expresses high levels of ICAM-1 but no CD36) mediate low levels of adhesion, whereas HDMEC (which constitutively express CD36) mediate high levels of adhesion even before ICAM-1 induction ICAM-1 expression leads to yet greater levels of adhesion, which are inhibited both by anti-ICAM-1 and CD36 mAbs, despite no increase in the expression of CD36. The results indicate the presence of a substantial population of infected cells that require the presence of both receptors to establish adhesion. Synergy between these receptors could be demonstrated using a number of parasite lines, but it could not be predicted from the binding of these same parasite lines to purified ICAM-1 and CD36. This phenomenon could not be reproduced using either purified receptors presented on plastic, or formalin-fixed HDMEC, suggesting that receptor mobility is important. This is the first study to demonstrate receptor synergy in malaria cytoadherence to human endothelial cells, a phenomenon necessary for parasite survival and associated with disease severity.
Journal of Virology | 2005
Andrew Street; Andrew S. MacDonald; Christopher J. McCormick; Mark Harris
ABSTRACT The hepatitis C virus (HCV) nonstructural NS5A protein has been shown to bind to and activate phosphoinositide 3-kinase (PI3K), resulting in activation of the downstream effector serine/threonine kinase Akt/protein kinase B. Here we present data pertaining to the effects of NS5A-mediated Akt activation on its downstream targets. Using a recombinant baculovirus to deliver the complete HCV polyprotein to human hepatoma cells in a tetracycline-regulable fashion, we confirm that expression of the complete HCV polyprotein also activates PI3K and Akt. We further show that this results in the inhibition of the Akt substrate Forkhead transcription factor and the stimulation of phosphorylation of a second key Akt substrate, glycogen synthase kinase-3β (GSK-3β). Phosphorylation of GSK-3β results in its inactivation; consistent with this, we show that expression of the HCV polyprotein results in the accumulation of β-catenin. Finally, we show that levels of β-catenin-dependent transcription are also elevated in the presence of the HCV polyprotein. Given the prevalence of β-catenin mutations in many human tumors, especially colon and hepatocellular carcinomas, these data implicate NS5A-mediated PI3K activation as a contributory factor in the increasingly common association between HCV infection and the development of hepatocellular carcinoma.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Vernon K. Ward; Christopher J. McCormick; Ian N. Clarke; Omar Salim; Christiane E. Wobus; Larissa B. Thackray; Herbert W. Virgin; Paul R. Lambden
Noroviruses are the major cause of nonbacterial gastroenteritis in humans. These viruses have remained refractory to detailed molecular studies because of the lack of a reverse genetics system coupled to a permissive cell line for targeted genetic manipulation. There is no permissive cell line in which to grow infectious human noroviruses nor an authentic animal model that supports their replication. In contrast, murine norovirus (MNV) offers a tractable system for the study of noroviruses with the recent discovery of permissive cells and a mouse model. The lack of a reverse genetic system for MNV has been a significant block to understanding the biology of noroviruses. We report recovery of infectious MNV after baculovirus delivery of viral cDNA to human hepatoma cells under the control of an inducible DNA polymerase (pol) II promoter. Recovered virus replicated in murine macrophage (RAW264.7) cells, and the recovery of MNV from DNA was confirmed through recovery of virus containing a marker mutation. This pol II promoter driven expression of viral cDNA also generated infectious virus after transfection of HEK293T cells, thus providing both transduction and transfection systems for norovirus reverse genetics. We used norovirus reverse genetics to demonstrate by mutagenesis of the protease–polymerase (pro–pol) cleavage site that processing of pro–pol is essential for the recovery of infectious MNV. This represents the first infectious reverse genetics system for a norovirus, and should provide approaches to address fundamental questions in norovirus molecular biology and replication.
Journal of Virology | 2005
Stephen Griffin; Dean Clarke; Christopher J. McCormick; David J. Rowlands; Mark Harris
ABSTRACT The hepatitis C virus (HCV) p7 protein forms an amantadine-sensitive ion channel required for viral replication in chimpanzees, though its precise role in the life cycle of HCV is unknown. In an attempt to gain some insights into p7 function, we examined the intracellular localization of p7 using epitope tags and an anti-p7 peptide antibody, antibody 1055. Immunofluorescence labeling of p7 at its C terminus revealed an endoplasmic reticulum (ER) localization independent of the presence of its signal peptide, whereas labeling the N terminus gave a mitochondrial-type distribution in brightly labeled cells. Both of these patterns could be visualized within individual cells, suggestive of separate pools of p7 where the N and C termini differed in accessibility to antibody. These patterns were disrupted by preventing signal peptide cleavage. Subcellular fractionation revealed that p7 was enriched in a heavy membrane fraction associated with mitochondria as well as normal ER-derived microsomes. The complex regulation of the intracellular distribution of p7 suggests that p7 plays multiple roles in the HCV life cycle either intracellularly or as a virion component.
Molecular and Biochemical Parasitology | 2003
Carolyn Gray; Christopher J. McCormick; Gareth D. H. Turner; Alister Craig
We have investigated the importance of adhesion molecule co-operation in mediating Plasmodium falciparum adhesion to endothelial cells under flow conditions. Using three laboratory parasite lines and a patient isolate which differ in their ICAM-1 and CD36-binding avidity, we found that blockade of ICAM-1 and CD36 separately reduced IRBC adhesion by up to 95 and 50%, respectively. These results confirm previous data showing that ICAM-1 and CD36 synergize to mediate adhesion, but differ in demonstrating that without ICAM-1, binding under flow conditions is severely impaired. Thus, in this system, ICAM-1 is critical for P. falciparum adhesion to activated endothelium and once bound, synergy with CD36 mediates the majority (> or =98%) of adhesion.
Molecular and Biochemical Parasitology | 1999
Christopher J. McCormick; Danny S. Tuckwell; Andrea Crisanti; Martin J. Humphries; Michael R. Hollingdale
Thrombospondin-related adhesion protein (TRAP) is a Plasmodium falciparum transmembrane protein that is expressed within the micronemes of sporozoites, and is implicated in host cell invasion and motility. Contained within the extracellular region of TRAP is an A-domain, a module found in a number of membrane, plasma and matrix proteins, that is often involved in ligand recognition. In order to determine the role of the TRAP A-domain, it has been expressed as a glutathione S-transferase fusion protein and its ligand binding compared with that of other characterised glutathione S-transferase A-domain fusion proteins. Using a solid phase assay to screen for binding to known A-domain ligands, the TRAP A-domain was found to bind heparin. Binding to heparin appeared to be specific as it was saturable, and was inhibited by soluble heparin, fucoidan and dextran sulfate, but not by other negatively charged sulfated glycosaminoglycans such as chondroitin sulfates. Furthermore, unlike some A-domain ligand interactions, the A-domain of both TRAP and the leukocyte integrin, Mac-1, bound to heparin in the absence of divalent cations. It has been shown previously that another domain within TRAP, which is homologous to region II-plus of circumsporozoite protein, binds to sulfatide and to heparan sulfate on the immortalised hepatocyte line HepG2. The TRAP A-domain also bound to sulfatide and to HepG2 cells. Thus the A-domain shares certain binding properties already attributed to the region II-plus-like domain of TRAP, and may contribute to the binding of TRAP to heparan sulfate on hepatocytes.
Journal of Virology | 2009
Mair Hughes; Sarah N. Gretton; Holly Shelton; David Brown; Christopher J. McCormick; Allan G. N. Angus; Arvind H. Patel; Stephen Griffin; Mark Harris
ABSTRACT We previously demonstrated that two closely spaced polyproline motifs, with the consensus sequence Pro-X-X-Pro-X-Lys/Arg, located between residues 343 to 356 of NS5A, mediated interactions with cellular SH3 domains. The N-terminal motif (termed PP2.1) is only conserved in genotype 1 isolates, whereas the C-terminal motif (PP2.2) is conserved throughout all hepatitis C virus (HCV) isolates, although this motif was shown to be dispensable for replication of the genotype 1b subgenomic replicon. In order to investigate the potential role of these motifs in the viral life cycle, we have undertaken a detailed mutagenic analysis of these proline residues in the context of both genotype 1b (FK5.1) or 2a subgenomic replicons and the genotype 2a infectious clone, JFH-1. We show that the PP2.2 motif is dispensable for RNA replication of all subgenomic replicons and, furthermore, is not required for virus production in JFH-1. In contrast, the PP2.1 motif is only required for genotype 1b RNA replication. Mutation of proline 346 within PP2.1 to alanine dramatically attenuated genotype 1b replicon replication in three distinct genetic backgrounds, but the corresponding proline 342 was not required for replication of the JFH-1 subgenomic replicon. However, the P342A mutation resulted in both a delay to virus release and a modest (up to 10-fold) reduction in virus production. These data point to critical roles for these proline residues at multiple stages in the HCV life cycle; however, they also caution against extrapolation of data from culture-adapted replicons to infectious virus.
Journal of Virology | 2008
Christopher J. McCormick; Omar Salim; Paul R. Lambden; Ian N. Clarke
ABSTRACT A generally accepted view of norovirus replication is that capsid expression requires production of a subgenomic transcript, the presence of capsid often being used as a surrogate marker to indicate the occurrence of viral replication. Using a polymerase II-based baculovirus delivery system, we observed capsid expression following introduction of a full-length genogroup 3 norovirus genome into HepG2 cells. However, capsid expression occurred as a result of a novel translation termination/reinitiation event between the nonstructural-protein and capsid open reading frames, a feature that may be unique to genogroup 3 noroviruses.
Journal of General Virology | 2009
Richard Adair; Arvind H. Patel; Lynsey Corless; Stephen Griffin; David J. Rowlands; Christopher J. McCormick
A characteristic of many positive-strand RNA viruses is that, whilst replication of the viral genome is dependent on the expression of the majority of non-structural proteins in cis, virus particle formation can occur when most or all of the structural proteins are co-expressed in trans. Making use of a recently identified hepatitis C virus (HCV) isolate (JFH1) that can be propagated in tissue culture, this study sought to establish whether this is also the case for hepaciviruses. Stable cell lines containing one of two bicistronic replicons derived from the JFH1 isolate were generated that expressed non-structural proteins NS3-5B or NS2-5B. Release and transmission of these replicons to naïve Huh7 cells could then be demonstrated when baculovirus transduction was used to express the HCV proteins absent from the subgenomic replicons. Transmission could be blocked by a neutralizing antibody targeted at the E2 envelope protein, consistent with this phenomenon occurring via trans-encapsidation of replicon RNA into virus-like particles. Transmission was also dependent on expression of NS2, which was most effective at promoting virus particle formation when expressed in cis on the replicon RNA compared with in trans via baculovirus delivery. Density gradient analysis of the particles revealed the presence of a broad infectious peak between 1.06 and 1.11 g ml(-1), comparable to that seen when propagating full-length virus in tissue culture. In summary, the trans-encapsidation system described offers a complementary and safer approach to study HCV particle formation and transmission in tissue culture.