Christopher J. Mottram
Liverpool John Moores University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. Mottram.
Proceedings of SPIE | 2004
Iain A. Steele; Robert J. Smith; Paul Rees; Ian P. Baker; Stuart Bates; Michael F. Bode; Mark K. Bowman; D. Carter; Jason Etherton; Martyn J. Ford; Stephen N. Fraser; Andreja Gomboc; Robert D. J. Lett; Anthony G. Mansfield; Jonathon M.-H. Marchant; Gustavo A. Medrano-Cerda; Christopher J. Mottram; D. Raback; A. B. Scott; M. D. Tomlinson; Radoslav K. Zamanov
The Liverpool Telescope is a 2.0 metre robotic telescope that is operating unattended at the Observatorio del Roque de Los Muchachos, Spain. This paper gives an overview of the design and implementation of the telescope and its instrumentation and presents a snapshot of the current performance during the commissioning process. Science observations are under way, and we give brief highlights from a number of programmes that have been enabled by the robotic nature of the telescope.
The Astrophysical Journal | 2007
Carole G. Mundell; Andrea Melandri; C. Guidorzi; Shiho Kobayashi; Iain A. Steele; Daniele Malesani; L. Amati; P. D’Avanzo; D. F. Bersier; Andreja Gomboc; E. Rol; M. F. Bode; D. Carter; Christopher J. Mottram; Alessandro Monfardini; Roger Smith; Sangeeta Malhotra; J. X. Wang; Nigel P. Bannister; P. T. O’Brien; Nial R. Tanvir
We present a multiwavelength analysis of Swift GRB 061007. The 2 m robotic Faulkes Telescope South began observing 137 s after the onset of the γ-ray emission, when the optical counterpart was already decaying from R ~ 10.3 mag, and continued observing for the next 5.5 hr. These observations begin during the final γ-ray flare and continue through and beyond a long, soft tail of γ-ray emission whose flux shows an underlying simple power-law decay identical to that seen at optical and X-ray wavelengths, with temporal slope α ~ 1.7 (F ∝ t-α). This remarkably simple decay in all of these bands is rare for Swift bursts, which often show much more complex light curves. We suggest the afterglow emission begins as early as 30-100 s and is contemporaneous with the ongoing variable prompt emission from the central engine, but originates from a physically distinct region dominated by the forward shock. The observed multiwavelength evolution of GRB 061007 is explained by an expanding fireball whose optical, X-ray, and late-time γ-ray emission is dominated by emission from a forward shock with typical synchrotron frequency, νm, that is already below the optical band as early as t = 137 s and a cooling frequency, νc, above the X-ray band to at least t = 105 s. In contrast, the typical frequency of the reverse shock lies in the radio band at early time. We suggest that the unexpected lack of bright optical flashes from the majority of Swift GRBs may be explained with a low νm originating from small microphysics parameters, e and B. Finally, the optical light curves imply a minimum jet opening angle θ = 4.7°, and no X-ray jet break before t ~ 106 s makes GRB 061007 a secure outlier to spectral energy correlations.
The Astrophysical Journal | 2008
Andreja Gomboc; Shiho Kobayashi; C. Guidorzi; Andrea Melandri; Vanessa Mangano; Boris Sbarufatti; Carole G. Mundell; Patricia Schady; Roger Smith; Adria C. Updike; D. A. Kann; Kuntal Misra; E. Rol; Alexei S. Pozanenko; A. J. Castro-Tirado; G. C. Anupama; D. F. Bersier; M. F. Bode; D. Carter; P. A. Curran; Andrew S. Fruchter; John F. Graham; Dieter H. Hartmann; Mansur A. Ibrahimov; Andrew J. Levan; Alessandro Monfardini; Christopher J. Mottram; P. T. O’Brien; P. Prema; D. K. Sahu
We present a detailed study of the prompt and afterglow emission from Swift GRB 061126 using BAT, XRT, UVOT data and multicolor optical imaging from 10 ground-based telescopes. GRB 061126 was a long burst (T90 = 191 s) with four overlapping peaks in its γ-ray light curve. The X-ray afterglow, observed from 26 minutes to 20 days after the burst, shows a simple power-law decay with αX = 1.290 ± 0.008. Optical observations presented here cover the time range from 258 s (Faulkes Telescope North) to 15 days (Gemini North) after the burst; the decay rate of the optical afterglow shows a steep-to-shallow transition (from α1 = 1.48 ± 0.06 to α2 = 0.88 ± 0.03) approximately 13 minutes after the burst. We suggest the early, steep component is due to a reverse shock and show that the magnetic energy density in the ejecta, expressed as a fraction of the equipartition value, is a few 10 times larger than in the forward shock in the early afterglow phase. The ejecta might be endowed with primordial magnetic fields at the central engine. The optical light curve implies a late-time break at about 1.5 days after the burst, while there is no evidence of the simultaneous break in the X-ray light curve. We model the broadband emission and show that some afterglow characteristics (the steeper decay in X-ray and the shallow spectral index from optical to X-ray) are difficult to explain in the framework of the standard fireball model. This might imply that the X-ray afterglow is due to an additional emission process, such as late-time central engine activity rather than blast-wave shock emission. The possible chromatic break at 1.5 days after the burst would give support to the additional emission scenario.
The Astrophysical Journal | 2008
Andrea Melandri; Carole G. Mundell; Shiho Kobayashi; C. Guidorzi; Andreja Gomboc; Iain A. Steele; Roger Smith; D. F. Bersier; Christopher J. Mottram; D. Carter; M. F. Bode; P. T. O’Brien; Nial R. Tanvir; E. Rol; R. Chapman
We present a multiwavelength analysis of 63 Gamma-Ray Bursts observed with the worlds three largest robotic optical telescopes, the Liverpool and Faulkes Telescopes (North and South). Optical emission was detected for 24 GRBs with brightnesses ranging from R = 10 to 22 mag in the first 10 minutes after the burst. By comparing optical and X-ray light curves from t = 100 to ∼ 10 6 seconds, we introduce four main classes, defined by the presence or absence of temporal breaks at optical and/or X-ray wavelengths. While 15/24 GRBs can be modelled with the forward-shock model, explanation of the remaining nine is very challenging in the standard framework even with the introduction of energy injection or an ambient density gradient. Early X-ray afterglows, even segments of light curves described by a power-law, may be due to additional emission from the central engine. 39 GRBs in our sample were not detected and have deep upper limits (R < 22 mag) at early time. Of these, only ten were identified by other facilities, primarily at near infrared wavelengths, resulting in a dark burst fraction of ∼50%. Additional emission in the early time X-ray afterglow due to late-time central engine activity may also explain some dark bursts by making the bursts brighter than expected in the X-ray band compared to the optical band.We present a multiwavelength analysis of 63 Gamma-Ray Bursts observed with the world’s three largest robotic optical telescopes, the Liverpool and Faulkes Telescopes (North and South). Optical emission was detected for 24 GRBs with brightnesses ranging from R = 10 to 22 mag in the first 10 minutes after the burst. By comparing optical and X-ray light curves from t = 100 to ∼ 10 seconds, we introduce four main classes, defined by the presence or absence of temporal breaks at optical and/or X-ray wavelengths. While 15/24 GRBs can be modelled with the forward-shock model, explanation of the remaining nine is very challenging in the standard framework even with the introduction of energy injection or an ambient density gradient. Early X-ray afterglows, even segments of light curves described by a power-law, may be due to additional emission from the central engine. 39 GRBs in our sample were not detected and have deep upper limits (R < 22 mag) at early time. Of these, only ten were identified by other facilities, primarily at near infrared wavelengths, resulting in a dark burst fraction of ∼50%. Additional emission in the early time X-ray afterglow due to late-time central engine activity may also explain some dark bursts by making the bursts brighter than expected in the X-ray band compared to the optical band. Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK Universita di Milano Bicocca, Dipartimento di Fisica, piazza della Scienze 3, I-20126 Milano, Italy INAF Osservatorio Astronomico di Brera, via Bianchi 46, 23807 Merate (LC), Italy FMF, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
The Astrophysical Journal | 2009
A. Gould; A. Udalski; Berto Monard; K. Horne; Subo Dong; N. Miyake; Kailash C. Sahu; D. P. Bennett; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; W. Allen; G. W. Christie; D. L. DePoy; B. S. Gaudi; Cheongho Han; C.-U. Lee; J. McCormick; T. Natusch; B.-G. Park; Richard W. Pogge; A. Allan; M. F. Bode; D. M. Bramich; M. J. Burgdorf; M. Dominik
Parallax is the most fundamental technique for measuring distances to astronomical objects. Although terrestrial parallax was pioneered over 2000 years ago by Hipparchus (ca. 140 B.C.E.) to measure the distance to the Moon, the baseline of the Earth is so small that terrestrial parallax can generally only be applied to objects in the Solar System. However, there exists a class of extreme gravitational microlensing events in which the effects of terrestrial parallax can be readily detected and so permit the measurement of the distance, mass, and transverse velocity of the lens. Here we report observations of the first such extreme microlensing event OGLE-2007-BLG-224, from which we infer that the lens is a brown dwarf of mass M = 0.056 ± 0.004 M ☉, with a distance of 525 ± 40 pc and a transverse velocity of 113 ± 21 km s–1. The velocity places the lens in the thick disk, making this the lowest-mass thick-disk brown dwarf detected so far. Follow-up observations may allow one to observe the light from the brown dwarf itself, thus serving as an important constraint for evolutionary models of these objects and potentially opening a new window on substellar objects. The low a priori probability of detecting a thick-disk brown dwarf in this event, when combined with additional evidence from other observations, suggests that old substellar objects may be more common than previously assumed.
Monthly Notices of the Royal Astronomical Society | 2011
Z. Cano; D. F. Bersier; C. Guidorzi; Raffaella Margutti; K. M. Svensson; Shiho Kobayashi; Andrea Melandri; K. Wiersema; Alexei S. Pozanenko; A. J. van der Horst; Guy G. Pooley; Alberto Fernandez-Soto; A. J. Castro-Tirado; A. de Ugarte Postigo; Myungshin Im; A. P. Kamble; D. K. Sahu; J. Alonso-Lorite; G. C. Anupama; Joanne Bibby; M. J. Burgdorf; Neil R. Clay; P. A. Curran; T. A. Fatkhullin; Andrew S. Fruchter; Peter Marcus Garnavich; Andreja Gomboc; J. Gorosabel; John F. Graham; U. K. Gurugubelli
We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t-to > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. --------------------------------------------------------------------------------
The Astrophysical Journal | 2013
F. J. Virgili; Carole G. Mundell; Valentin Pal'Shin; C. Guidorzi; R. Margutti; A. Melandri; R. Harrison; Shiho Kobayashi; Ryan Chornock; Arne A. Henden; Adria C. Updike; S. B. Cenko; Nial R. Tanvir; Iain A. Steele; Antonino Cucchiara; Andreja Gomboc; Andrew J. Levan; Z. Cano; Christopher J. Mottram; Neil R. Clay; D. F. Bersier; D. Kopač; J. Japelj; Alexei V. Filippenko; Weidong Li; D. Svinkin; S. Golenetskii; Dieter H. Hartmann; Peter A. Milne; George Grant Williams
We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (gsim1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.
Scopus | 2011
D. F. Bersier; C. Guidorzi; Shiho Kobayashi; Andrea Melandri; Joanne Bibby; Neil R. Clay; Christopher J. Mottram; Carole G. Mundell; Emma E. Small; Roger Smith; Iain A. Steele; R. Margutti; K. M. Svensson; Andrew J. Levan; A. Volvach; K. Wiersema; Paul T. O'Brien; Rhaana L. C. Starling; Nial R. Tanvir; Alexei S. Pozanenko; V. Loznikov; A. J. van der Horst; Guy G. Pooley; Alberto Fernandez-Soto; A. J. Castro-Tirado; J. Gorosabel; A. de Ugarte Postigo; Myungshin Im; Young-Beom Jeon; W-K. Park
We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t-to > 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. --------------------------------------------------------------------------------
Astronomy and Astrophysics | 2009
C. Guidorzi; C. Clemens; Shiho Kobayashi; Jonathan Granot; Andrea Melandri; Paolo D'Avanzo; N. P. M. Kuin; Alain Klotz; J. P. U. Fynbo; S. Covino; J. Greiner; Daniele Malesani; Ji-Rong Mao; Carole G. Mundell; Iain A. Steele; P. Jakobsson; Raffaella Margutti; D. F. Bersier; Sergio Campana; Guido Chincarini; Valerio D'Elia; Dino Fugazza; F. Genet; Andreja Gomboc; T. Krühler; A. Küpcü Yoldas; A. Moretti; Christopher J. Mottram; Paul T. O'Brien; Roger Smith
Context. X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with a peak energy of the time-integrated νFν spectrum, Ep, typically below 30 keV, whereas classical GRBs have Ep of a few hundreds of keV. Apart from Ep and the systematically lower luminosity, the properties of XRFs, such as their duration or spectral indices, are typical of the classical GRBs. Yet, the nature of XRFs and their differences from GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. Aims. We examine in detail the case of XRF 080330 discovered by Swift at redshift 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich broadband (from NIR to UV) photometric data set we collected during this phase makes it an ideal candidate for testing the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. Methods. We present prompt γ-ray, early and late NIR/visible/UV and X-ray observations of the XRF 080330. We derive a spectral energy distribution from NIR to X-ray bands across the shallow/plateau phase and describe the temporal evolution of the multiwavelength afterglow within the context of the standard afterglow model. Results. The multiwavelength evolution of the afterglow is achromatic from ∼10 2 st o∼8 × 10 4 s. The energy spectrum from NIR to X-ray is reproduced well by a simple power-law, Fν ∝ ν −βox , with βox = 0.79 ± 0.01 and negligible rest-frame dust extinction. The light curve can be modelled by either a piecewise power-law or the combination of a smoothly broken power law with an initial rise up to ∼600 s, a plateau lasting up to ∼2 ks, followed by a gradual steepening to a power-law decay index of ∼2 until 82 ks. At this point, a bump appears to be modelled well with a second component, while the corresponding optical energy spectrum, Fν ∝ ν −βo , reddens by Δβo = 0.26 ± 0.06. Conclusions. A single-component jet viewed off-axis can explain the light curve of XRF 080330, the late-time reddening being due to the reverse shock of an energy injection episode and its being an XRF. Other possibilities, such as the optical rise marking the pre-deceleration of the fireball within a wind environment, cannot be excluded definitely, but appear to be contrived. We exclude the possibility of a dust decreasing column density being swept up by the fireball as explaining the rise of the afterglow.
Astronomy and Astrophysics | 2007
P. A. Curran; A. J. van der Horst; A. P. Beardmore; Kim L. Page; E. Rol; Andrea Melandri; I. A. Steele; Carole G. Mundell; Andreja Gomboc; Paul T. O'Brien; D. F. Bersier; M. F. Bode; D. Carter; C. Guidorzi; J. E. Hill; C. P. Hurkett; Shiho Kobayashi; Alessandro Monfardini; Christopher J. Mottram; Roger Smith; R. A. M. J. Wijers; R. Willingale
Aims.We present our analysis of the multiwavelength photometric & spectroscopic observations of GRB 060210 and discuss the results in the overall context of current GRB models. Methods: All available optical data underwent a simultaneous temporal fit, while X-ray and gamma-ray observations were analysed temporally & spectrally. The results were compared to each other and to possible GRB models. Results: The X-ray afterglow is best described by a smoothly broken power-law with a break at 7.4 h. The late optical afterglow has a well constrained single power-law index which has a value between the two X-ray indices, though it does agree with a single power-law fit to the X-ray. An evolution of the hardness of the high-energy emission is demonstrated and we imply a minimum host extinction from a comparison of the extrapolated X-ray flux to that measured in the optical. Conclusions: We find that the flaring gamma-ray and X-ray emission is likely due to internal shocks while the flat optical light curve at that time is due to the external shock. The late afterglow is best explained by a cooling break between the optical and X-rays and continued central engine activity up to the time of the break. The required collimation corrected energy of ~2×1052 erg, while at the high end of the known energy distribution, is not unprecedented.