Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Plack is active.

Publication


Featured researches published by Christopher J. Plack.


Journal of the Acoustical Society of America | 1997

A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing

Andrew J. Oxenham; Christopher J. Plack

This paper examines the possibility of estimating basilar-membrane (BM) nonlinearity using a psychophysical technique. The level of a forward masker required to mask a brief signal was measured for conditions where the masker was either at, or one octave below, the signal frequency. The level of the forward masker at masked threshold provided an indirect measure of the BM response to the signal, as follows. Consistent with physiological studies, it was assumed that the BM responds linearly to frequencies well below the characteristic frequency (CF). Thus the ratio of the slopes of the masking functions between a masker at the signal frequency and a masker well below the signal frequency should provide an estimate of BM compression at CF. Results obtained from normally hearing listeners were in quantitative agreement with physiological estimates of BM compression. Furthermore, differences between normally hearing listeners and listeners with cochlear hearing impairment were consistent with the physiological effects of damage to the cochlea. The results support the hypothesis that BM nonlinearity governs the nonlinear growth of the upward spread of masking, and suggest that this technique provides a straightforward method for estimating BM nonlinearity in humans.


Journal of the Acoustical Society of America | 1988

The shape of the ear’s temporal window

Brian C. J. Moore; Brian R. Glasberg; Christopher J. Plack; A. K. Biswas

This article examines the idea that the temporal resolution of the auditory system can be modeled using a temporal window (an intensity weighting function) analogous to the auditory filter measured in the frequency domain. To estimate the shape of the hypothetical temporal window, threshold was measured for a brief sinusoidal signal presented in a temporal gap between two bursts of noise. The duration of the gap was systematically varied and the signal was placed both symmetrically and asymmetrically within the gap. The data were analyzed by assuming that the temporal window had the form of a simple mathematical expression with a small number of free parameters. The values of the parameters were adjusted to give the best fit to the data. The analysis assumed that, for each condition, the temporal window was centered at the time giving the highest signal-to-masker ratio, and that threshold corresponded to a fixed ratio of signal energy to masker energy at the output of the window. The data were fitted well by modeling each side of the window as the sum of two rounded-exponential functions. The window was highly asymmetric, having a shallower slope for times before the center than for times after. The equivalent rectangular duration (ERD) of the window was typically about 8 ms. The ERD increased slightly when the masker level was decreased, but did not differ significantly for signal frequencies of 500 and 2000 Hz. The temporal-window model successfully accounts for the data from a variety of experiments measuring temporal resolution. However, it fails to predict certain aspects of forward masking and of the detection of amplitude modulation at high rates.


Journal of the Acoustical Society of America | 1996

Basilar-membrane nonlinearity and the growth of forward masking

Christopher J. Plack; Andrew J. Oxenham

Forward masking growth functions were measured for pure-tone maskers and signals at 2 and 6 kHz as a function of the silent interval between the masker and signal. The inclusion of conditions involving short signals and short masker-signal intervals ensured that a wide range of signal thresholds were recorded. A consistent pattern was seen across all the results. When the signal level was below about 35 dB SPL the growth of masking was shallow, so that signal threshold increased at a much slower rate than masker level. When the signal level exceeded this value, the masking function steepened, approaching unity (linear growth) at the highest masker and signal levels. The results are inconsistent with an explanation for forward-masking growth in terms of saturating neural adaptation. Instead the data are well described by a model incorporating a simulation of the basilar-membrane response at characteristic frequency (which is almost linear at low levels and compressive at higher levels) followed by a sliding intensity integrator or temporal window. Taken together with previous results, the findings suggest that the principle nonlinearity in temporal masking may be the basilar membrane response function, and that subsequent to this the auditory system behaves as if it were linear in the intensity domain.


Journal of the Acoustical Society of America | 1999

Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism.

Brian C. J. Moore; Deborah A. Vickers; Christopher J. Plack; Andrew J. Oxenham

The active mechanism in the cochlea is thought to depend on the integrity of the outer hair cells (OHCs). Cochlear hearing loss is usually associated with damage to both inner hair cells (IHCs) and OHCs, with the latter resulting in a reduction in or complete loss of the function of the active mechanism. It is believed that the active mechanism contributes to the sharpness of tuning on the basilar membrane (BM) and is also responsible for compressive input-output functions on the BM. Hence, one would expect a close relationship between measures of sharpness of tuning and measures of compression. This idea was tested by comparing three different measures of the status of the active mechanism, at center frequencies of 2, 4, and 6 kHz, using subjects with normal hearing, with unilateral or highly asymmetric cochlear hearing loss, and with bilateral loss. The first measure, HLOHC, was an indirect measure of the amount of the hearing loss attributable to OHC damage; this was based on loudness matches between the two ears of subjects with unilateral hearing loss and was derived using a loudness model. The second measure was the equivalent rectangular bandwidth (ERB) of the auditory filter, which was estimated using the notched-noise method. The third measure was based on the slopes of growth-of-masking functions obtained in forward masking. The ratio of slopes for a masker centered well below the signal frequency and a masker centered at the signal frequency gives a measure of BM compression at the place corresponding to the signal frequency; a ratio close to 1 indicates little or no compression, while ratios less than 1 indicate that compression is occurring at the signal place. Generally, the results showed the expected pattern. The ERB tended to increase with increasing HLOHC. The ratio of the forward-masking slopes increased from about 0.3 to about 1 as HLOHC increased from 0 to 55 dB. The ratio of the slopes was highly correlated with the ERB (r = 0.92), indicating that the sharpness of the auditory filter decreases as the compression on the BM decreases.


Journal of the Acoustical Society of America | 2003

Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing

Enrique A. Lopez-Poveda; Christopher J. Plack; Ray Meddis

Cochlear nonlinearity was estimated over a wide range of center frequencies and levels in listeners with normal hearing, using a forward-masking method. For a fixed low-level probe, the masker level required to mask the probe was measured as a function of the masker-probe interval, to produce a temporal masking curve (TMC). TMCs were measured for probe frequencies of 500, 1000, 2000, 4000, and 8000 Hz, and for masker frequencies 0.5, 0.7, 0.9, 1.0 (on frequency), 1.1, and 1.6 times the probe frequency. Across the range of probe frequencies, the TMCs for on-frequency maskers showed two or three segments with clearly distinct slopes. If it is assumed that the rate of decay of the internal effect of the masker is constant across level and frequency, the variations in the slopes of the TMCs can be attributed to variations in cochlear compression. Compression-ratio estimates for on-frequency maskers were between 3:1 and 5:1 across the range of probe frequencies. Compression did not decrease at low frequencies. The slopes of the TMCs for the lowest frequency probe (500 Hz) did not change with masker frequency. This suggests that compression extends over a wide range of stimulus frequencies relative to characteristic frequency in the apical region of the cochlea.


Cerebral Cortex | 2009

Pitch Processing Sites in the Human Auditory Brain

Deborah A. Hall; Christopher J. Plack

Lateral Heschls gyrus (HG), a subdivision of the human auditory cortex, is commonly believed to represent a general “pitch center,” responding selectively to the pitch of sounds, irrespective of their spectral characteristics. However, most neuroimaging investigations have used only one specialized pitch-evoking stimulus: iterated-ripple noise (IRN). The present study used a novel experimental design in which a range of different pitch-evoking stimuli were presented to the same listeners. Pitch sites were identified by searching for voxels that responded well to the range of pitch-evoking stimuli. The first result suggested that parts of the planum temporale are more relevant for pitch processing than lateral HG. In some listeners, pitch responses occurred elsewhere, such as the temporo-parieto-occipital junction or prefrontal cortex. The second result demonstrated a different pattern of response to the IRN and raises the possibility that features of IRN unrelated to pitch might contribute to the earlier results. In conclusion, it seems premature to assign special status to lateral HG solely on the basis of neuroactivation patterns. Further work should consider the functional roles of these multiple pitch processing sites within the proposed network.


Trends in hearing | 2014

Perceptual consequences of "hidden" hearing loss

Christopher J. Plack; Daphne Barker; Garreth Prendergast

Dramatic results from recent animal experiments show that noise exposure can cause a selective loss of high-threshold auditory nerve fibers without affecting absolute sensitivity permanently. This cochlear neuropathy has been described as hidden hearing loss, as it is not thought to be detectable using standard measures of audiometric threshold. It is possible that hidden hearing loss is a common condition in humans and may underlie some of the perceptual deficits experienced by people with clinically normal hearing. There is some evidence that a history of noise exposure is associated with difficulties in speech discrimination and temporal processing, even in the absence of any audiometric loss. There is also evidence that the tinnitus experienced by listeners with clinically normal hearing is associated with cochlear neuropathy, as measured using Wave I of the auditory brainstem response. To date, however, there has been no direct link made between noise exposure, cochlear neuropathy, and perceptual difficulties. Animal experiments also reveal that the aging process itself, in the absence of significant noise exposure, is associated with loss of auditory nerve fibers. Evidence from human temporal bone studies and auditory brainstem response measures suggests that this form of hidden loss is common in humans and may have perceptual consequences, in particular, regarding the coding of the temporal aspects of sounds. Hidden hearing loss is potentially a major health issue, and investigations are ongoing to identify the causes and consequences of this troubling condition.


Journal of the Acoustical Society of America | 2004

Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss

Christopher J. Plack; Vit Drga; Enrique A. Lopez-Poveda

Psychophysical estimates of cochlear function suggest that normal-hearing listeners exhibit a compressive basilar-membrane (BM) response. Listeners with moderate to severe sensorineural hearing loss may exhibit a linearized BM response along with reduced gain, suggesting the loss of an active cochlear mechanism. This study investigated how the BM response changes with increasing hearing loss by comparing psychophysical measures of BM compression and gain for normal-hearing listeners with those for listeners who have mild to moderate sensorineural hearing loss. Data were collected from 16 normal-hearing listeners and 12 ears from 9 hearing-impaired listeners. The forward masker level required to mask a fixed low-level, 4000-Hz signal was measured as a function of the masker-signal interval using a masker frequency of either 2200 or 4000 Hz. These plots are known as temporal masking curves (TMCs). BM response functions derived from the TMCs showed a systematic reduction in gain with degree of hearing loss. Contrary to current thinking, however, no clear relationship was found between maximum compression and absolute threshold.


Journal of the Acoustical Society of America | 1998

Suppression and the upward spread of masking

Andrew J. Oxenham; Christopher J. Plack

The purpose of this study is to clarify the role of suppression in the growth of masking when a signal is well above the masker in frequency (upward spread of masking). Classical psychophysical models assume that masking is primarily due to the spread of masker excitation, and that the nonlinear upward spread of masking reflects a differential growth in excitation between the masker and the signal at the signal frequency. In contrast, recent physiological studies have indicated that upward spread of masking in the auditory nerve is due to the increasing effect of suppression with increasing masker level. This study compares thresholds for signals between 2.4 and 5.6 kHz in simultaneous and nonsimultaneous masking for conditions in which the masker is either at or well below the signal frequency. Maximum differences between simultaneous and nonsimultaneous masking were small (< 6 dB) for the on-frequency conditions but larger for the off-frequency conditions (15-32 dB). The results suggest that suppression plays a major role in determining thresholds at high masker levels, when the masker is well below the signal in frequency. This is consistent with the conclusions of physiological studies. However, for signal levels higher than about 40 dB SPL, the growth of masking for signals above the masker frequency is nonlinear even in the nonsimultaneous-masking conditions, where suppression is not expected. This is consistent with an explanation based on the compressive response of the basilar membrane, and confirms that suppression is not necessary for nonlinear upward spread of masking.


Journal of the Acoustical Society of America | 2003

Psychophysical evidence for auditory compression at low characteristic frequencies

Christopher J. Plack; Vit Drga

Psychophysical estimates of compression often assume that the basilar-membrane response to frequencies well below characteristic frequency (CF) is linear. Two techniques for estimating compression are described here that do not depend on this assumption at low CFs. In experiment 1, growth of forward masking was measured for both on- and off-frequency pure-tone maskers for pure-tone signals at 250, 500, and 4000 Hz. The on- and off-frequency masking functions at 250 and 500 Hz were just as shallow as the on-frequency masking function at 4000 Hz. In experiment 2, the forward masker level required to mask a fixed low-level signal was measured as a function of the masker-signal interval. The slopes of these functions did not differ between signal frequencies of 250 and 4000 Hz for the on-frequency maskers. At 250 Hz, the slope for the 150-Hz masker was almost as steep as that for the on-frequency masker, whereas at 4000 Hz the slope for the 2400-Hz masker was much shallower than that for the on-frequency masker. The results suggest that there is substantial compression, of around 0.2-0.3 dB/dB, at low CFs in the human auditory system. Furthermore, the results suggest that at low CFs compression does not vary greatly with stimulation frequency relative to CF.

Collaboration


Dive into the Christopher J. Plack's collaboration.

Top Co-Authors

Avatar

Robert P. Carlyon

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar

Hedwig E. Gockel

Cognition and Brain Sciences Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Munro

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Guest

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ifat Yasin

University College London

View shared research outputs
Top Co-Authors

Avatar

Vit Drga

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge