Christopher J. R. Loewen
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. R. Loewen.
Science | 2010
Barry P. Young; John Jh Shin; Rick Orij; Jesse Chao; Shu Chen Li; Xue Li Guan; Anthony Khong; Eric Jan; Markus R. Wenk; William A. Prinz; Gertien J. Smits; Christopher J. R. Loewen
Intracellular pH and Lipid Metabolism Intracellular pH regulates metabolism by poorly understood mechanisms, but biosensors are likely to be important in this process. Young et al. (p. 1085) took a systems-biology approach in yeast to identify in excess of 200 genes that regulate phospholipid metabolism. They found that the signaling lipid, phosphatidic acid, appeared to act as a cytosolic biosensor via the pH-dependent binding of protein effectors to phosphatidic acid. This pH-dependent mechanism directly affects gene expression and is involved in a pathway in which nutrient availability regulates phospholipid metabolism to control production of membranes. Lipid signaling in yeast is regulated by intracellular pH. Recognition of lipids by proteins is important for their targeting and activation in many signaling pathways, but the mechanisms that regulate such interactions are largely unknown. Here, we found that binding of proteins to the ubiquitous signaling lipid phosphatidic acid (PA) depended on intracellular pH and the protonation state of its phosphate headgroup. In yeast, a rapid decrease in intracellular pH in response to glucose starvation regulated binding of PA to a transcription factor, Opi1, that coordinately repressed phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability.
Journal of Biological Chemistry | 2005
Christopher J. R. Loewen; Timothy P. Levine
A variety of lipid-binding proteins contain a recently described motif, designated FFAT (two phenylalanines in an acidic tract), which binds to vesicle-associated-membrane protein-associated protein (VAP). VAP is a conserved integral membrane protein of the endoplasmic reticulum that contains at its amino terminus a domain related to the major sperm protein of nematode worms. Here we have studied the FFAT-VAP interaction in Saccharomyces cerevisiae, where the VAP homologue Scs2 regulates phospholipid metabolism via an interaction with the FFAT motif of Opi1. By introducing mutations at random into Scs2, we found that mutations that abrogated binding to FFAT were clustered in the most highly conserved region. Using site-directed mutagenesis, we identified several critical residues, including two lysines widely separated in the primary sequence. By examining all other conserved basic residues, we identified a third residue that was moderately important for binding FFAT. Modeling VAP on the known structure of major sperm protein showed that the critical residues form a patch on a positively charged face of the protein. In vivo functional studies of SCS22, a second SCS2-like gene in S. cerevisiae, showed that SCS2 was the dominant gene in the regulation of Opi1, with a minor contribution from SCS22. We then established that reduction in the affinity of Scs2 mutants for FFAT correlated well with loss of function, indicating the importance of these residues for binding FFAT motifs. Finally, we found that human VAP-A could substitute for Scs2 but that it functioned poorly, suggesting that other factors modulate the binding of Scs2 to proteins with FFAT motifs.
PLOS Biology | 2014
Sujoy Lahiri; Jesse Chao; Shabnam Tavassoli; Andrew Wong; Vineet Choudhary; Barry P. Young; Christopher J. R. Loewen; William A. Prinz
Tethering of the endoplasmic reticulum to mitochondria by a conserved endoplasmic reticulum complex is needed for the transfer of phospholipids between these organelles.
Journal of Cell Science | 2012
Christiane Voss; Sujoy Lahiri; Barry P. Young; Christopher J. R. Loewen; William A. Prinz
Summary The endoplasmic reticulum (ER) forms a network of sheets and tubules that extends throughout the cell. Proteins required to maintain this complex structure include the reticulons, reticulon-like proteins, and dynamin-like GTPases called atlastins in mammals and Sey1p in Saccharomyces cerevisiae. Yeast cells missing these proteins have abnormal ER structure, particularly defects in the formation of ER tubules, but grow about as well as wild-type cells. We screened for mutations that cause cells that have defects in maintaining ER tubules to grow poorly. Among the genes we found were members of the ER mitochondria encounter structure (ERMES) complex that tethers the ER and mitochondria. Close contacts between the ER and mitochondria are thought to be sites where lipids are moved from the ER to mitochondria, a process that is required for mitochondrial membrane biogenesis. We show that ER to mitochondria phospholipid transfer slows significantly in cells missing both ER-shaping proteins and the ERMES complex. These cells also have altered steady-state levels of phospholipids. We found that the defect in ER to mitochondria phospholipid transfer in a strain missing ER-shaping proteins and a component of the ERMES complex was corrected by expression of a protein that artificially tethers the ER and mitochondria. Our findings indicate that ER-shaping proteins play a role in maintaining functional contacts between the ER and mitochondria and suggest that the shape of the ER at ER–mitochondria contact sites affects lipid exchange between these organelles.
Journal of Cell Biology | 2007
Christopher J. R. Loewen; Barry P. Young; Shabnam Tavassoli; Timothy P. Levine
How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein–associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.
BMC Biology | 2011
John Jh Shin; Christopher J. R. Loewen
The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology.
EMBO Reports | 2013
Shabnam Tavassoli; Jesse Chao; Barry P. Young; Ruud C. Cox; William A. Prinz; Anton I.P.M. de Kroon; Christopher J. R. Loewen
Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid‐synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)—ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N‐methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM–ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.
Cell | 2014
Jesse Chao; Andrew Wong; Shabnam Tavassoli; Barry P. Young; Adam T. Chruscicki; Nancy N. Fang; LeAnn Howe; Thibault Mayor; Leonard J. Foster; Christopher J. R. Loewen
Polarization of the plasma membrane (PM) into domains is an important mechanism to compartmentalize cellular activities and to establish cell polarity. Polarization requires formation of diffusion barriers that prevent mixing of proteins between domains. Recent studies have uncovered that the endoplasmic reticulum (ER) of budding yeast and neurons is polarized by diffusion barriers, which in neurons controls glutamate signaling in dendritic spines. The molecular identity of these barriers is currently unknown. Here, we show that a direct interaction between the ER protein Scs2 and the septin Shs1 creates the ER diffusion barrier in yeast. Barrier formation requires Epo1, a novel ER-associated subunit of the polarisome that interacts with Scs2 and Shs1. ER-septin tethering polarizes the ER into separate mother and bud domains, one function of which is to position the spindle in the mother until M phase by confining the spindle capture protein Num1 to the mother ER.
BMC Bioinformatics | 2013
Barry P. Young; Christopher J. R. Loewen
BackgroundSynthetic Genetic Array (SGA) analysis is a procedure which has been developed to allow the systematic examination of large numbers of double mutants in the yeast Saccharomyces cerevisiae. The aim of these experiments is to identify genetic interactions between pairs of genes. These experiments generate a number of images of ordered arrays of yeast colonies which must be analyzed in order to quantify the extent of the genetic interactions. We have designed software that is able to analyze virtually any image of regularly arrayed colonies and allows the user significant flexibility over the analysis procedure.Results“Balony” is freely available software which enables the extraction of quantitative data from array-based genetic screens. The program follows a multi-step process, beginning with the optional preparation of plate images from single or composite images. Next, the colonies are identified on a plate and the pixel area of each is measured. This is followed by a scoring module which normalizes data and pairs control and experimental data files. The final step is analysis of the scored data, where the strength and reproducibility of genetic interactions can be visualized and cross-referenced with information on each gene to provide biological insights into the results of the screen.ConclusionsAnalysis of SGA screens with Balony can be either automated or highly interactive, enabling the user to customize the process to their specific needs. Quantitative data can be extracted at each stage for external analysis if required. Beyond SGA, this software can be used for analyzing many types of plate-based high-throughput screens.
Journal of Biological Chemistry | 2014
Wayne R. Riekhof; Wen-I Wu; Jennifer L. Jones; Mrinalini Nikrad; Mallory M. Chan; Christopher J. R. Loewen; Dennis R. Voelker
Background: The machinery for interorganelle phosphatidylserine (PtdSer) transport is poorly defined at the molecular level. Results: Molecular interaction studies identify specific protein-protein and protein-lipid interactions in PtdSer transport. Conclusion: A protein and lipid interaction network defines key participants in PS transport to the locus of PtdSer-decarboxylase 2. Significance: This study identifies important molecular participants involved in non-vesicular phospholipid traffic. Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.