Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Russo is active.

Publication


Featured researches published by Christopher J. Russo.


Science | 2014

Ultrastable gold substrates for electron cryomicroscopy

Christopher J. Russo; Lori A. Passmore

Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that α helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of α-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures. A new support for biological specimens improves the resolution that can be achieved by electron microscopy. A golden era for electron microscopy Electron microscopy (EM) is an attractive method for determining structures of protein complexes that are difficult to crystallize. Exciting recent developments in electron detectors allow EM structure determination to near atomic resolution. A key impediment to further improvement is that single specimens move during irradiation. Russo and Passmore designed a gold support that moves much less during irradiation than the current support and as a result prevents movement of the protein sample. Using the support they determined the structure of apo-ferritin which, as a spherical shell of α-helices, is particularly challenging to solve by EM. Science, this issue p. 1377


Structure | 2015

Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging

Tanmay A. M. Bharat; Christopher J. Russo; Jan Löwe; Lori A. Passmore; Sjors H.W. Scheres

Summary Recent innovations in specimen preparation, data collection, and image processing have led to improved structure determination using single-particle electron cryomicroscopy (cryo-EM). Here we explore some of these advances to improve structures determined using electron cryotomography (cryo-ET) and sub-tomogram averaging. We implement a new three-dimensional model for the contrast transfer function, and use this in a regularized likelihood optimization algorithm as implemented in the RELION program. Using direct electron detector data, we apply both single-particle analysis and sub-tomogram averaging to analyze radiation-induced movements of the specimen. As in single-particle cryo-EM, we find that significant sample movements occur during tomographic data acquisition, and that these movements are substantially reduced through the use of ultrastable gold substrates. We obtain a sub-nanometer resolution structure of the hepatitis B capsid, and show that reducing radiation-induced specimen movement may be central to attempts at further improving tomogram quality and resolution.


Nature Methods | 2014

Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas

Christopher J. Russo; Lori A. Passmore

Despite its many favorable properties as a sample support for biological electron microscopy, graphene is not widely used because its hydrophobicity precludes reliable protein deposition. We describe a method to modify graphene with a low-energy hydrogen plasma, which reduces hydrophobicity without degrading the graphene lattice. Use of plasma-treated graphene enables better control of protein distribution in ice for electron cryo-microscopy and improves image quality by reducing radiation-induced sample motion.


NeuroImage | 2014

Impact of brain tissue filtering on neurostimulation fields: a modeling study.

Tim Wagner; Uri T. Eden; Jarrett Rushmore; Christopher J. Russo; Laura Dipietro; Felipe Fregni; Stephen Simon; Stephen R. Rotman; Naomi B. Pitskel; Ciro Ramos-Estebanez; Alvaro Pascual-Leone; Alan J. Grodzinsky; Markus Zahn; Antoni Valero-Cabré

Electrical neurostimulation techniques, such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS), are increasingly used in the neurosciences, e.g., for studying brain function, and for neurotherapeutics, e.g., for treating depression, epilepsy, and Parkinsons disease. The characterization of electrical properties of brain tissue has guided our fundamental understanding and application of these methods, from electrophysiologic theory to clinical dosing-metrics. Nonetheless, prior computational models have primarily relied on ex-vivo impedance measurements. We recorded the in-vivo impedances of brain tissues during neurosurgical procedures and used these results to construct MRI guided computational models of TMS and DBS neurostimulatory fields and conductance-based models of neurons exposed to stimulation. We demonstrated that tissues carry neurostimulation currents through frequency dependent resistive and capacitive properties not typically accounted for by past neurostimulation modeling work. We show that these fundamental brain tissue properties can have significant effects on the neurostimulatory-fields (capacitive and resistive current composition and spatial/temporal dynamics) and neural responses (stimulation threshold, ionic currents, and membrane dynamics). These findings highlight the importance of tissue impedance properties on neurostimulation and impact our understanding of the biological mechanisms and technological potential of neurostimulatory methods.


Journal of Structural Biology | 2016

Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens.

Christopher J. Russo; Lori A. Passmore

Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope.


Current Opinion in Structural Biology | 2016

Progress towards an optimal specimen support for electron cryomicroscopy

Christopher J. Russo; Lori A. Passmore

The physical principles of electron-specimen interaction govern the design of specimen supports for electron cryomicroscopy (cryo-EM). Supports are constructed to suspend biological samples within the vacuum of the electron microscope in a way that maximises image contrast. Although the problem of specimen motion during imaging has been known since cryo-EM was first developed, the role of the support in this movement has only been recently identified. Here we review the key technological advances in specimen supports for cryo-EM. This includes the use of graphene as a surface for the adsorption of proteins and the design of an ultrastable, all-gold substrate that reduces the motion of molecules during electron irradiation. We discuss the implications of these and other recent improvements in specimen supports on resolution, and place them in the context of important developments in structure determination by cryo-EM.


Nature | 2015

Structural insights into the bacterial carbon-phosphorus lyase machinery

Paulina Seweryn; Lan Bich Van; M. Kjeldgaard; Christopher J. Russo; Lori A. Passmore; Bjarne Hove-Jensen; Bjarne Jochimsen; Ditlev E. Brodersen

Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon–phosphorus (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C–P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.


Microscopy and Microanalysis | 2010

Sub-angstrom low-voltage performance of a monochromated, aberration-corrected transmission electron microscope.

David C. Bell; Christopher J. Russo; Gerd Benner

Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Angstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: (1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; (2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; (3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-Angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science.


Methods in Enzymology | 2016

Specimen Preparation for High-Resolution Cryo-EM

Lori A. Passmore; Christopher J. Russo

Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here, we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector, and support technology.


Journal of Structural Biology | 2014

Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs.

Christopher J. Russo; Lori A. Passmore

Determining the structure of a protein complex using electron microscopy requires the calculation of a 3D density map from 2D images of single particles. Since the individual images are taken at low electron dose to avoid radiation damage, they are noisy and difficult to align with each other. This can result in incorrect maps, making validation essential. Pairs of electron micrographs taken at known angles to each other (tilt-pairs) can be used to measure the accuracy of assigned projection orientations and verify the soundness of calculated maps. Here we establish a statistical framework for evaluating images and density maps using tilt-pairs. The directional distribution of such angular data is modelled using a Fisher distribution on the unit sphere. This provides a simple, quantitative and easily comparable metric, the concentration parameter κ, for evaluating the quality of datasets and density maps that is independent of the data collection and analysis methods. A large κ is indicative of good agreement between the particle images and the 3D density map. For structure validation, we recommend κ>10 and a p-value <0.01. The statistical framework herein allows one to objectively answer the question: Is a reconstructed density map correct within a particular confidence interval?

Collaboration


Dive into the Christopher J. Russo's collaboration.

Top Co-Authors

Avatar

Lori A. Passmore

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katerina Naydenova

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Richard Henderson

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alan J. Grodzinsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alvaro Pascual-Leone

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge