Christopher J. Silva
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. Silva.
PLOS Pathogens | 2012
Gustavo Sajnani; Christopher J. Silva; Adriana Ramos; Miguel A. Pastrana; Bruce Onisko; Melissa L. Erickson; Elizabeth M. Antaki; Irina Dynin; Ester Vázquez-Fernández; Christina J. Sigurdson; J. Mark Carter; Jesús R. Requena
One of the main characteristics of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrPSc following Western blot or ELISA. More recently, researchers determined that there is a sizeable fraction of PrPSc that is sensitive to PK hydrolysis (sPrPSc). Our group has previously reported a method to isolate this fraction by centrifugation and showed that it has protein misfolding cyclic amplification (PMCA) converting activity. We compared the infectivity of the sPrPSc versus the PK-resistant (rPrPSc) fractions of PrPSc and analyzed the biochemical characteristics of these fractions under conditions of limited proteolysis. Our results show that sPrPSc and rPrPSc fractions have comparable degrees of infectivity and that although they contain different sized multimers, these multimers share similar structural properties. Furthermore, the PK-sensitive fractions of two hamster strains, 263K and Drowsy (Dy), showed strain-dependent differences in the ratios of the sPrPSc to the rPrPSc forms of PrPSc. Although the sPrPSc and rPrPSc fractions have different resistance to PK-digestion, and have previously been shown to sediment differently, and have a different distribution of multimers, they share a common structure and phenotype.
Biochemistry | 2011
Binbin Gong; Adriana Ramos; Ester Vázquez-Fernández; Christopher J. Silva; Jana Alonso; Zengshan Liu; Jesús R. Requena
We used two chemical modifiers, tetranitromethane (TNM) and acetic anhydride (Ac(2)O), which specifically target accessible tyrosine and lysine residues, respectively, to modify recombinant Syrian hamster PrP(90-231) [rSHaPrP(90-231)] and SHaPrP 27-30, the proteinase K-resistant core of PrP(Sc) isolated from brain of scrapie-infected Syrian hamsters. Our aim was to find locations of conformational change. Modified proteins were subjected to in-gel proteolytic digestion with trypsin or chymotrypsin and subsequent analysis by mass spectrometry (MALDI-TOF). Several differences in chemical reactivity were observed. With TNM, the most conspicuous reactivity difference seen involves peptide E(221)-R(229) (containing Y(225) and Y(226)), which in rSHaPrP(90-231) was much more extensively modified than in SHaPrP 27-30; peptide H(111)-R(136), containing Y(128), was also more modified in rSHaPrP(90-231). Conversely, peptides Y(149)-R(151), Y(157)-R(164), and R(151)-Y(162) suffered more extensive modification in SHaPrP 27-30. Acetic anhydride modified very extensively peptide G(90)-K(106), containing K(101), K(104), K(106), and the amino terminus, in both rSHaPrP(90-231) and SHaPrP 27-30. These results suggest that (1) SHaPrP 27-30 exhibits important conformational differences in the C-terminal region with respect to rSHaPrP(90-231), resulting in the loss of solvent accessibility of Y(225) and Y(226), very solvent-exposed in the latter conformation; because other results suggest preservation of the two C-terminal helices, this might mean that these are tightly packed in SHaPrP 27-30. (2) On the other hand, tyrosines contained in the stretch spanning approximately Y(149)-R(164) are more accessible in SHaPrP 27-30, suggesting rearrangements in α-helix H1 and the short β-sheet of rSHaPrP(90-231). (3) The amino-terminal region of SHaPrP 27-30 is very accessible. These data should help in the validation and construction of structural models of PrP(Sc).
PLOS ONE | 2012
Ester Vázquez-Fernández; Jana Alonso; Miguel A. Pastrana; Adriana Ramos; Lothar Stitz; Enric Vidal; Irina Dynin; Benjamin Petsch; Christopher J. Silva; Jesús R. Requena
Elucidation of the structure of PrPSc continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrPSc). However, the presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-based analysis impractical. In order to surmount these difficulties we analyzed PrPSc from transgenic mice expressing prion protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot and mass spectrometry-based analysis. GPI-less PrPSc samples were digested with PK. PK-resistant peptides were identified, and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179. The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrPSc. These results reinforce the hypothesis that the structure of PrPSc consists of a series of highly PK-resistant β-sheet strands connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrPSc is highly resistant to PK and therefore perhaps also contains β-sheet secondary structure.
Proteomics | 2012
Philipp Ottis; Katharina Koppe; Bruce Onisko; Irina Dynin; Thomas Arzberger; Hans A. Kretzschmar; Jesús R. Requena; Christopher J. Silva; Joseph P. Huston; Carsten Korth
The accumulation of an autofluorescent pigment called lipofuscin in neurons is an invariable hallmark of brain aging. So far, this material has been considered to be waste material without particular relevance for cellular pathology. However, two lines of evidence argue that lipofuscin may play a yet unidentified role for pathological cellular functions: (i) Genetic forms of premature accumulation of similar autofluorescent material in neuronal ceroid lipofuscinosis indicate a direct disease‐associated link to lipofuscin; (ii) Retinal pigment epithelium cell lipofuscin is mechanistically linked to age‐associated macular degeneration. Here, we purified autofluorescent material from the temporal and hippocampal cortices of three different human individuals by a two‐step ultracentrifugation on sucrose gradients. For human brain lipofuscin, we could identify a common set of 49 (among > 200 total) proteins that are mainly derived from mitochondria, cytoskeleton, and cell membrane. This brain lipofuscin proteome was validated in an interspecies comparison with whole brain rat lipofuscin (total > 300 proteins), purified by the same procedure, yielding an overlap of 32 proteins (64%) between lipofuscins of both species. Our study is the first to characterize human and rat brain lipofuscin and identifies high homology, pointing to common cellular pathomechanisms of age‐associated lipofuscin accumulation despite the huge (40‐fold) difference in the lifespan of these species. Our identification of these distinct proteins will now allow research in disturbed molecular pathways during age‐associated dysfunctional lysosomal degradation.
Virus Research | 2015
Christopher J. Silva; Ester Vázquez-Fernández; Bruce Onisko; Jesús R. Requena
Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.
Molecular Neurobiology | 2014
Matthias Schmitz; Catharina Greis; Philipp Ottis; Christopher J. Silva; Walter Schulz-Schaeffer; Arne Wrede; Katharina Koppe; Bruce Onisko; Jesús R. Requena; Nambirajan Govindarajan; Carsten Korth; Andre Fischer; Inga Zerr
The cellular prion protein (PrPC) is a highly conserved protein whose exact physiological role remains elusive. In the present study, we investigated age-dependent behavioral abnormalities in PrPC-knockout (Prnp0/0) mice and wild-type (WT) controls. Prnp0/0 mice showed age-dependent behavioral deficits in memory performance, associative learning, basal anxiety, and nest building behavior. Using a hypothesis-free quantitative proteomic investigation, we found that loss of PrPC affected the levels of neurofilament proteins in an age-dependent manner. In order to understand the biochemical basis of these observations, we analyzed the phosphorylation status of neurofilament heavy chain (NF-H). We found a reduction in NF-H phosphorylation in both Prnp0/0 mice and in PrPC-deficient cells. The expression of Fyn and phospho-Fyn, a potential regulator for NF phosphorylation, was associated with PrPC ablation. The number of β-tubulin III-positive neurons in the hippocampus was diminished in Prnp0/0 mice relative to WT mice. These data indicate that PrPC plays an important role in cytoskeletal organization, brain function, and age-related neuroprotection. Our work represents the first direct biochemical link between these proteins and the observed behavioral phenotypes.
Biochemistry | 2010
Christopher J. Silva; Bruce Onisko; Irina Dynin; Melissa L. Erickson; William H. Vensel; Jes us R. Requena; Elizabeth M. Antaki; John Mark Carter
Prions are infectious proteins that are able to recruit a normal cellular prion protein and convert it into a prion. The mechanism of this conversion is unknown. Detailed analysis of the normal cellular prion protein and a corresponding prion has shown they possess identical post-translational modifications and differ solely in conformation. Recent work has suggested that the oxidized form of the methionine at position 213 (Met213) plays a role in the conversion of the normal cellular prion protein to the prion conformation and is a prion-specific covalent signature. We developed a sensitive method of quantitating the methionine sulfoxide present at position 213 (MetSO213) and used this method to measure the changes in MetSO213 over the time course of an intracranial challenge, using the 263K strain of hamster-adapted scrapie. These results indicate that the proportion of Met213 that is oxidized decreases over the course of the disease. We examined the quantity of MetSO213 in PrP(C) and compared it to the amount found in animals terminally afflicted with the 263K, 139H, and drowsy strains of hamster-adapted scrapie. These strains show only low levels of MetSO213 that is comparable to that of PrP(C). These data suggest that MetSO213 does not appear to be a prion-specific covalent signature.
Analytical Chemistry | 2011
Christopher J. Silva; Bruce Onisko; Irina Dynin; Melissa L. Erickson; Jesús R. Requena; John Mark Carter
We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the integrated MRM signals from selected analyte peptides and their oxidized analogues to their homologous stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limit of quantitation (LOQ) for the synthetic peptides from human, sheep, deer, cow, and mouse PrP were determined to be below 100 amol. Nonanalyte peptides that were characteristic of prions were included in the multiple reaction monitoring method, thereby allowing for both the quantitation and confirmation of the presence of prions in the attomole range. This method was used to quantitate the prions present in brains of hamsters or mice 5 weeks after inoculation (ic) with either four hamster-adapted prion strains (139H, drowsy, 22AH, and 22CH) or four mouse-adapted prion strains (Me7, Me7-298, RML, and 79A). The prions from different brain regions of a sheep naturally infected with scrapie were quantitated. All of the rodent-adapted prion strains were detectable in the asymptomatic animals. In sheep, prions were detectable in the obex, anterior portion of the cerebrum, and the nonobex/nonanterior portion of the cerebrum. This mass spectrometry-based approach can be used to quantitate and confirm the presence of prions before detectable pathology.
Prion | 2012
Christopher J. Silva
PrPSc is an infectious protein. The only experimentally verified difference between PrPSc and its normal cellular isoform (PrPC) is conformational. This work describes an approach to determining the presence of surface exposed or sequestered amino acids present in the PrPSc isoform. The N-hydroxysuccinimide esters of acetic acid and 4-trimethylammoniumbutyric acid were synthesized and reacted with detergent-solubilized brain extracts from Me7-infected mice, uninfected mice, 263K-infected hamsters or uninfected hamsters. These reaction mixtures were analyzed by western blots probed with the antibodies 3F4, 6D11, 7D9, AG4, AH6, GE8 or MAB5424. The 3F4, 6D11, AH6, and GE8 antibodies recognize an epitope that is encrypted in the PrPSc isoform, but exposed in the PrPC isoform. These reagents permit the detection of prion infected brain extracts without the need for proteinase K digestion. In addition they can be used, with an appropriate antibody, to determine which amino acids of PrPSc are exposed on the surface and which are encrypted, thus providing useful structural information. This approach was used to distinguish between the 263K and drowsy strains of hamster-adapted scrapie without the use of proteinase K.
Biochemistry | 2013
Christopher J. Silva; Irina Dynin; Melissa L. Erickson; Jesús R. Requena; Aru Balachandran; Colleen Hui; Bruce Onisko; John Mark Carter
We employed a sensitive mass spectrometry-based method to deconstruct, confirm, and quantitate the prions present in elk naturally infected with chronic wasting disease and sheep naturally infected with scrapie. We used this approach to study the oxidation of a methionine at position 216 (Met216), because this oxidation (MetSO216) has been implicated in prion formation. Three polymorphisms (Ile218, Val218, and Thr218) of sheep recombinant prion protein were prepared. Our analysis showed the novel result that the proportion of MetSO216 was highly dependent upon the amino acid residue at position 218 (I > V > T), indicating that Ile218 in sheep and elk prion protein (PrP) renders the Met216 intrinsically more susceptible to oxidation than the Val218 or Thr218 analogue. We were able to quantitate the prions in the attomole range. The presence of prions was verified by the detection of two confirmatory peptides: GENFTETDIK (sheep and elk) and ESQAYYQR (sheep) or ESEAYYQR (elk). This approach required much smaller amounts of tissue (600 μg) than traditional methods of detection (enzyme-linked immunosorbent assay, Western blot, and immunohistochemical analysis) (60 mg). In sheep and elk, a normal cellular prion protein containing MetSO216 is not actively recruited and converted to prions, although we observed that this Met216 is intrinsically more susceptible to oxidation.