Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Stefan is active.

Publication


Featured researches published by Christopher J. Stefan.


Journal of Cell Biology | 2003

Vps27 recruits ESCRT machinery to endosomes during MVB sorting

David J. Katzmann; Christopher J. Stefan; Markus Babst; Scott D. Emr

Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.


Cell | 2008

Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface

Charles Lin; Jason A. MacGurn; Tony Chu; Christopher J. Stefan; Scott D. Emr

The diversity of plasma membrane (PM) proteins presents a challenge for the achievement of cargo-specific regulation of endocytosis. Here, we describe a family of proteins in yeast (ARTs, for arrestin-related trafficking adaptors) that function by targeting specific PM proteins to the endocytic system. Two members (Art1 and Art2) of the family were discovered in chemical-genetic screens, and they direct downregulation of distinct amino acid transporters triggered by specific stimuli. Sequence analysis revealed a total of nine ART family members in yeast. In addition to similarity to arrestins, the ARTs each contain multiple PY motifs. These motifs are required for recruitment of the Rsp5/Nedd4-like ubiquitin ligase, which modifies the cargoes as well as the ARTs. As a result, ubiquitinated cargoes are internalized and targeted to the vacuole (lysosome) for degradation. We propose that ARTs provide a cargo-specific quality-control pathway that mediates endocytic downregulation by coupling Rsp5/Nedd4 to diverse plasma membrane proteins.


Cell | 2011

Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites

Christopher J. Stefan; Andrew G. Manford; Daniel Baird; Jason Yamada-Hanff; Yuxin Mao; Scott D. Emr

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.


Developmental Cell | 2012

ER-to-Plasma Membrane Tethering Proteins Regulate Cell Signaling and ER Morphology

Andrew G. Manford; Christopher J. Stefan; Helen L. Yuan; Jason A. MacGurn; Scott D. Emr

Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function.


Current Opinion in Cell Biology | 2013

ER–PM connections: sites of information transfer and inter-organelle communication

Christopher J. Stefan; Andrew G. Manford; Scott D. Emr

Eukaryotic cells are divided into distinct membrane-bound organelles with unique identities and specialized metabolic functions. Communication between organelles must take place to regulate the size, shape, and composition of individual organelles, as well as to coordinate transport between organelles. The endoplasmic reticulum (ER) forms an expansive membrane network that contacts and participates in crosstalk with several other organelles in the cell, most notably the plasma membrane (PM). ER-PM junctions have well-established functions in the movement of small molecules, such as lipids and ions, between the ER and PM. Recent discoveries have revealed additional exciting roles for ER-PM junctions in the regulation of cell signaling, ER shape and architecture, and PM domain organization.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function

Amy J. Curwin; Christopher J. Stefan; Christopher R. McMaster

The Saccharomyces cerevisiae phosphatidylcholine/phosphatidylinositol transfer protein Sec14p is required for Golgi apparatus-derived vesicular transport through coordinate regulation of phospholipid metabolism. Sec14p is normally essential. The essential requirement for SEC14 can be bypassed by inactivation of (i) the CDP–choline pathway for phosphatidylcholine synthesis or (ii) KES1, which encodes an oxysterol binding protein. A unique screen was used to determine genome-wide genetic interactions for the essential gene SEC14 and to assess whether the two modes of “sec14 bypass” were similar or distinct. The results indicate that inactivation of the CDP–choline pathway allows cells with inactivated SEC14 to live through a mechanism distinct from that of inactivation of KES1. We go on to demonstrate an important biological function of Kes1p. Kes1p regulates Golgi apparatus-derived vesicular transport by inhibiting the function of Pik1p-generated Golgi apparatus phosphatidylinositol-4-phosphate (PI-4P). Kes1p affects both the availability and level of Golgi apparatus PI-4P. A set of potential PI-4P-responsive proteins that include the Rab GTPase Ypt31p and its GTP exchange factor are described.


Molecular and Cellular Biology | 2005

The Phosphoinositide Phosphatase Sjl2 Is Recruited to Cortical Actin Patches in the Control of Vesicle Formation and Fission during Endocytosis

Christopher J. Stefan; Steven M. Padilla; Anjon Audhya; Scott D. Emr

ABSTRACT The Saccharomyces cerevisiae synaptojanin-like proteins (Sjl1, Sjl2, and Sjl3) are phosphoinositide (PI) phosphatases that regulate PI metabolism in the control of actin organization and membrane trafficking. However, the primary sites of action for each of the yeast synaptojanin-like proteins remain unclear. In this study, we show that Sjl2 is localized to cortical actin patches, sites of endocytosis. Cortical recruitment of Sjl2 requires the actin patch component Abp1. Consistent with this, the SH3 domain-containing protein Abp1 physically associates with Sjl2 through its proline-rich domain. Furthermore, abp1Δ mutations confer defects resembling loss of SJL2; sjl1Δ abp1Δ double-mutant cells exhibit invaginated plasma membranes and impaired endocytosis, findings similar to those for sjl1Δ sjl2Δ mutant cells. Thus, Abp1 acts as an adaptor protein in the localization or concentration of Sjl2 during late stages of endocytic vesicle formation. Overexpression of the Hip1-related protein Sla2 delayed the formation of extended plasma membrane invaginations in sjl2 ts cells, indicating that Sla2 may become limiting or misregulated in cells with impaired PI phosphatase activity. Consistent with this, the cortical actin patch protein Sla2 is mislocalized in sjl1Δ sjl2Δ mutant cells. Together, our studies suggest that PI metabolism by the synaptojanin-like proteins coordinately directs actin dynamics and membrane invagination, in part by regulation of Sla2.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5-bisphosphate distribution is required for MAPK signaling

Lindsay S. Garrenton; Christopher J. Stefan; Michael A. McMurray; Scott D. Emr; Jeremy Thorner

During response of budding yeast to peptide mating pheromone, the cell becomes markedly polarized and MAPK scaffold protein Ste5 localizes to the resulting projection (shmoo tip). We demonstrated before that this recruitment is essential for sustained MAPK signaling and requires interaction of a pleckstrin homology (PH) domain in Ste5 with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in the plasma membrane. Using fluorescently tagged high-affinity probes specific for PtdIns(4,5)P2, we have now found that this phosphoinositide is highly concentrated at the shmoo tip in cells responding to pheromone. Maintenance of this strikingly anisotropic distribution of PtdIns(4,5)P2, stable tethering of Ste5 at the shmoo tip, downstream MAPK activation, and expression of a mating pathway-specific reporter gene all require continuous function of the plasma membrane-associated PtdIns 4-kinase Stt4 and the plasma membrane-associated PtdIns4P 5-kinase Mss4 (but not the Golgi-associated PtdIns 4-kinase Pik1). Our observations demonstrate that PtdIns(4,5)P2 is the primary determinant for restricting localization of Ste5 within the plasma membrane and provide direct evidence that an extracellular stimulus-evoked self-reinforcing mechanism generates a spatially enriched pool of PtdIns(4,5)P2 necessary for the membrane anchoring and function of a signaling complex.


Journal of Cell Biology | 2011

Eisosome proteins assemble into a membrane scaffold

Lena Karotki; Juha T. Huiskonen; Christopher J. Stefan; Natasza E. Ziółkowska; Robyn Roth; Michal A. Surma; Nevan J. Krogan; Scott D. Emr; John E. Heuser; Kay Grünewald; Tobias C. Walther

Membrane organization by eisosomes is mediated by self-assembly of its main components into a membrane-bound protein scaffold with lipid-binding specificity.


The EMBO Journal | 2010

Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function

Andrew G. Manford; Tian Xia; Ajay Kumar Saxena; Christopher J. Stefan; Fenghua Hu; Scott D. Emr; Yuxin Mao

Sac family phosphoinositide (PI) phosphatases are an essential family of CX5R(T/S)‐based enzymes, involved in numerous aspects of cellular function such as PI homeostasis, cellular signalling, and membrane trafficking. Genetic deletions of several Sac family members result in lethality in animal models and mutations of the Sac3 gene have been found in human hereditary diseases. In this study, we report the crystal structure of a founding member of this family, the Sac phosphatase domain of yeast Sac1. The 2.0 Å resolution structure shows that the Sac domain comprises of two closely packed sub‐domains, a novel N‐terminal sub‐domain and the PI phosphatase catalytic sub‐domain. The structure further shows a striking conformation of the catalytic P‐loop and a large positively charged groove at the catalytic site. These findings suggest an unusual mechanism for its dephosphorylation function. Homology structural modeling of human Fig4/Sac3 allows the mapping of several disease‐related mutations and provides a framework for the understanding of the molecular mechanisms of human diseases.

Collaboration


Dive into the Christopher J. Stefan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anjon Audhya

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boyang Li

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge