Christopher J. van der Gast
Mansfield University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher J. van der Gast.
Nature Reviews Microbiology | 2007
James I. Prosser; Brendan J. M. Bohannan; Thomas P. Curtis; Richard J. Ellis; Mary K. Firestone; Robert P. Freckleton; Jessica L. Green; Laura E. Green; Ken Killham; Jack J. Lennon; A. Mark Osborn; Martin Solan; Christopher J. van der Gast; J. Peter W. Young
Microbial ecology is currently undergoing a revolution, with repercussions spreading throughout microbiology, ecology and ecosystem science. The rapid accumulation of molecular data is uncovering vast diversity, abundant uncultivated microbial groups and novel microbial functions. This accumulation of data requires the application of theory to provide organization, structure, mechanistic insight and, ultimately, predictive power that is of practical value, but the application of theory in microbial ecology is currently very limited. Here we argue that the full potential of the ongoing revolution will not be realized if research is not directed and driven by theory, and that the generality of established ecological theory must be tested using microbial systems.
The ISME Journal | 2011
Christopher J. van der Gast; Alan W. Walker; Franziska A. Stressmann; Geraint B. Rogers; Paul Scott; T. Daniels; Mary P. Carroll; Julian Parkhill; Kenneth D. Bruce
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections that lead to death in the majority of cases. The need to maintain lung function in these patients means that characterising these infections is vital. Increasingly, culture-independent analyses are expanding the number of bacterial species associated with CF respiratory samples; however, the potential significance of these species is not known. Here, we applied ecological statistical tools to such culture-independent data, in a novel manner, to partition taxa within the metacommunity into core and satellite species. Sputa and clinical data were obtained from 14 clinically stable adult CF patients. Fourteen rRNA gene libraries were constructed with 35 genera and 82 taxa, identified in 2139 bacterial clones. Shannon–Wiener and taxa-richness analyses confirmed no undersampling of bacterial diversity. By decomposing the distribution using the ratio of variance to the mean taxon abundance, we partitioned objectively the species abundance distribution into core and satellite species. The satellite group comprised 67 bacterial taxa from 33 genera and the core group, 15 taxa from 7 genera (including Pseudomonas (1 taxon), Streptococcus (2), Neisseria (2), Catonella (1), Porphyromonas (1), Prevotella (5) and Veillonella (3)], the last four being anaerobes). The core group was dominated by Pseudomonas aeruginosa. Other recognised CF pathogens were rare. Mantel and partial Mantel tests assessed which clinical factors influenced the composition observed. CF transmembrane conductance regulator genotype and antibiotic treatment correlated with all core taxa. Lung function correlated with richness. The clinical significance of these core and satellite species findings in the CF lung is discussed.
The ISME Journal | 2013
Christina Hazard; Paul Gosling; Christopher J. van der Gast; Derek T. Mitchell; Fiona M. Doohan; Gary D. Bending
Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects’) was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.
Thorax | 2012
Franziska A. Stressmann; Geraint B. Rogers; Christopher J. van der Gast; Peter Marsh; Louic S. Vermeer; Mary P. Carroll; Lucas R. Hoffman; T. Daniels; Nilesh Patel; Benjamin Forbes; Kenneth D. Bruce
Background Culture-independent analysis of the respiratory secretions of people with cystic fibrosis (CF) has identified many bacterial species not previously detected using culture in this context. However, little is known about their clinical significance or persistence in CF airways. Methods The authors characterised the viable bacterial communities in the sputum collected from 14 patients at monthly intervals over 1 year using a molecular community profiling technique—terminal restriction fragment length polymorphism. Clinical characteristics were also collected, including lung function and medications. Ecological community measures were determined for each sample. Microbial community change over time within subjects was defined using ecological analytical tools, and these measures were compared between subjects and to clinical features. Results Bacterial communities were stable within subjects over time but varied between subjects, despite similarities in clinical course. Antibiotic therapy temporarily perturbed these communities which generally returned to pretreatment configurations within 1 month. Species usually considered CF pathogens and those not previously regarded as such exhibited similar patterns of persistence. Less diverse sputum bacterial communities were correlated to lung disease severity and relative abundance of Pseudomonas aeruginosa. Conclusion Whilst not true in all cases, the microbial communities that chronically infect the airways of patients with CF can vary little over a year despite antibiotic perturbation. The species present tended to vary more between than within subjects, suggesting that each CF airway infection is unique, with relatively stable and resilient bacterial communities. The inverse relationship between community richness and disease severity is similar to findings reported in other mucosal infections.
Thorax | 2013
Geraint B. Rogers; Christopher J. van der Gast; Leah Cuthbertson; Serena Thomson; Kenneth D. Bruce; Megan L. Martin; David J. Serisier
Rationale Despite the potentially important roles for infection in adult non-cystic fibrosis (CF) bronchiectasis disease progression, the bacterial species present in the lower airways of these patients is poorly characterised. Objectives To provide a comprehensive cross-sectional analysis of bacterial content of lower airway samples from patients with non-CF bronchiectasis using culture-independent microbiology. Methods Paired induced sputum and bronchoalveolar lavage samples, obtained from 41 adult patients with non-CF bronchiectasis, were analysed by 16S ribosomal RNA gene pyrosequencing. Assessment of species distribution and dispersal allowed ‘core’ and ‘satellite’ bacterial populations to be defined for this patient group. Microbiota characteristics correlated with clinical markers of disease. Measurement and main results 140 bacterial species were identified, including those associated with respiratory tract infections and opportunistic infections more generally. A group of core species, consisting of species detected frequently and in high abundance, was defined. Core species included those currently associated with infection in bronchiectasis, such as Pseudomonas aeruginosa, Haemophilus influenzae and Streptococcus pneumoniae, and many species that would be unlikely to be reported through standard diagnostic surveillance. These included members of the genera Veillonella, Prevotella and Neisseria. The comparative contribution of core and satellite groups suggested a low level of random species acquisition. Bacterial diversity was significantly positively correlated with forced expiratory volume in 1 s (FEV1) and bacterial community composition similarity correlated significantly with FEV1, neutrophil count and Leicester cough score. Conclusions Characteristics of the lower airways microbiota of adult patients with non-CF bronchiectasis correlate significantly with clinical markers of disease severity.
Environmental Microbiology | 2008
Christopher J. van der Gast; Duane Ager; Andrew K. Lilley
Microorganisms operate at a range of spatial and temporal scales acting as key drivers of ecosystem properties. Therefore, many key questions in microbial ecology require the consideration of both spatial and temporal scales. Spatial scaling, in particular the species-area relationship (SAR), has a long history in ecology and has recently been addressed in microbial ecology. However, the temporal analogue of the SAR, the species-time relationship, has received far less attention even in the science of general ecology. Here we focus upon the role of temporal scaling in microbial ecological patterns by coupling molecular characterization of bacterial communities in discrete island (bioreactor) systems with a macroecological approach. Our findings showed that the temporal scaling exponent (slope), and therefore taxa turnover of the bacterial taxa-time relationship decreased as selective pressure (industrial wastewater concentration) increased. Also, as the concentration of industrial wastewater increased across the bioreactors, we observed a gradual switch from stochastic community assembly to more deterministic (niche)-based considerations. The identification of broad-scale statistical patterns is particularly relevant to microbial ecology, as it is frequently difficult to identify individual species or their functions. In this study, we identify wide-reaching statistical patterns of diversity and show that they are shaped by the prevalent underlying ecological factors.
Environmental Microbiology | 2011
Christopher J. van der Gast; Paul Gosling; Bela Tiwari; Gary D. Bending
Evidence suggests that microbial communities show patterns of spatial scaling which can be driven by geographical distance and environmental heterogeneity. Here we demonstrate that human management can have a major impact on microbial distribution patterns at both the local and landscape scale. Mycorrhizal fungi are vital components of terrestrial ecosystems, forming a mutualistic symbiosis with plant roots which has a major impact on above ground ecology and productivity. We used contrasting agricultural systems to investigate the spatial scaling of the most widespread mycorrhizal fungus group, the arbuscular mycorrhizal fungi (AMF). Using multiple sampling sites with a maximum separation of 250 km we describe for the first time the roles which land management, environmental heterogeneity and geographical distance play in determining spatial patterns of microbial distribution. Analysis of AMF taxa-area relationships at each sampling site revealed that AMF diversity and spatial turnover was greater under organic relative to conventional farm management. At the regional scale (250 km) distance-decay analyses showed that there was significant change in AMF community composition with distance, and that this was greater under organic relative to conventional management. Environmental heterogeneity was found to be the major factor determining turnover of AMF taxa at the landscape scale. Overall we demonstrate that human management can play a key role in determining the turnover of microbial communities at both the local and regional scales.
Journal of Hazardous Materials | 2010
Robert J. Barnes; Christopher J. van der Gast; Olga Riba; Laura E. Lehtovirta; James I. Prosser; Peter J. Dobson; Ian P. Thompson
Zero-valent iron (ZVI) nanoparticles are of interest because of their many potential biomedical and environmental applications. However, these particles have recently been reported to be cytotoxic to bacterial cells. The overall objective of this study was to determine the impact of 100mg/L ZVI nanoparticles on the diversity and structure of an indigenous river water bacterial community. Response during exposure for 36 days was determined by denaturing gel gradient electrophoresis (DGGE) analysis of bacterial 16S rRNA genes, amplified from extracted DNA, and viable and total cell abundances were determined by plate counting and fluorescent microscopy of DAPI-stained cells. Changes in river water chemistry were also monitored. Addition of ZVI nanoparticles led to a rapid decrease in oxidation-reduction potential (ORP) (+196 to -281 mV) and dissolved oxygen (DO) concentration (8.2-0.6 mg/L), both of which stabilized during the experiment. Interestingly, both viable and total bacterial cell abundances increased and pH decreased, characteristic of an active microbial community. Total community structure was visualized using rank-abundance plots fitted with linear regression models. The slopes of the regression models were used as a descriptive statistic of changes in evenness over time. Importantly, despite bacterial growth, addition of ZVI nanoparticles did not influence bacterial community structure.
Environmental Microbiology | 2010
Duane Ager; Simon R. Evans; Hong Li; Andrew K. Lilley; Christopher J. van der Gast
Patterns of taxa abundance distributions are the result of the combined effects of historical and biological processes and as such are central to ecology. It is accepted that a taxa abundance distribution for a given community of animals or plants following a perturbation will typically change in structure from one of high evenness to increasing dominance. Subsequently, such changes in evenness have been used as indicators of biological integrity and environmental assessment. Here, using replicated experimental treehole microcosms perturbed with different concentrations of the pollutant pentachlorophenol, we investigated whether changes in bacterial community structure would reflect the effects of anthropogenic stress in a similar manner to larger organisms. Community structure was visualized using rank-abundance plots fitted with linear regression models. The slopes of the regression models were used as a descriptive statistic of changes in evenness over time. Our findings showed that bacterial community structure reflected the impact and the recovery from an anthropogenic disturbance. In addition, the intensity of impact and the rate of recovery to pre-perturbation structure were dose-dependent. These properties of bacterial community structures may potentially provide a metric for environmental assessment and regulation.
PLOS ONE | 2011
Jianjun Wang; Dongmei Yang; Yong Zhang; Ji Shen; Christopher J. van der Gast; Martin W. Hahn; Qinglong L. Wu
It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.