Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Vitek is active.

Publication


Featured researches published by Christopher J. Vitek.


Emerging Infectious Diseases | 2017

Variation in aedes aegypti mosquito competence for zika virus transmission

Christopher M. Roundy; Sasha R. Azar; Shannan L. Rossi; Jing H. Huang; Grace Leal; Ruimei Yun; Ildefonso Fernández-Salas; Christopher J. Vitek; Igor Adolfo Dexheimer Paploski; Uriel Kitron; Guilherme S. Ribeiro; Kathryn A. Hanley; Scott C. Weaver; Nikos Vasilakis

To test whether Zika virus has adapted for more efficient transmission by Aedes aegypti mosquitoes, leading to recent urban outbreaks, we fed mosquitoes from Brazil, the Dominican Republic, and the United States artificial blood meals containing 1 of 3 Zika virus strains (Senegal, Cambodia, Mexico) and monitored infection, dissemination, and virus in saliva. Contrary to our hypothesis, Cambodia and Mexica strains were less infectious than the Senegal strain. Only mosquitoes from the Dominican Republic transmitted the Cambodia and Mexica strains. However, blood meals from viremic mice were more infectious than artificial blood meals of comparable doses; the Cambodia strain was not transmitted by mosquitoes from Brazil after artificial blood meals, whereas 61% transmission occurred after a murine blood meal (saliva titers up to 4 log10 infectious units/collection). Although regional origins of vector populations and virus strain influence transmission efficiency, Ae. aegypti mosquitoes appear to be competent vectors of Zika virus in several regions of the Americas.


American Journal of Tropical Medicine and Hygiene | 2017

Differential vector competency of aedes albopictus populations from the Americas for Zika Virus

Pamela M. Stark; Sasha R. Azar; Mustapha Debboun; Jeremy Vela; Christopher M. Roundy; Shannan L. Rossi; Martin Reyna; Kathryn A. Hanley; Guilherme S. Ribeiro; Uriel Kitron; Ruimei Yun; Jing H. Huang; Ildefonso Fernández-Salas; Grace Leal; Nikos Vasilakis; Scott C. Weaver; Christopher J. Vitek; Igor Adolfo Dexheimer Paploski

To evaluate the potential role of Aedes albopictus (Skuse) as a vector of Zika virus (ZIKV), colonized mosquitoes of low generation number (≤ F5) from Brazil, Houston, and the Rio Grande Valley of Texas engorged on viremic mice infected with ZIKV strains originating from Senegal, Cambodia, Mexico, Brazil, or Puerto Rico. Vector competence was established by monitoring infection, dissemination, and transmission potential after 3, 7, and 14 days of extrinsic incubation. Positive saliva samples were assayed for infectious titer. Although all three mosquito populations were susceptible to all ZIKV strains, rates of infection, dissemination, and transmission differed among mosquito and virus strains. Aedes albopictus from Salvador, Brazil, were the least efficient vectors, demonstrating susceptibility to infection to two American strains of ZIKV but failing to shed virus in saliva. Mosquitoes from the Rio Grande Valley were the most efficient vectors and were capable of shedding all three tested ZIKV strains into saliva after 14 days of extrinsic incubation. In particular, ZIKV strain DakAR 41525 (Senegal 1954) was significantly more efficient at dissemination and saliva deposition than the others tested in Rio Grande mosquitoes. Overall, our data indicate that, while Ae. albopictus is capable of transmitting ZIKV, its competence is potentially dependent on geographic origin of both the mosquito population and the viral strain.


Journal of The American Mosquito Control Association | 2008

A method to increase efficiency in testing pooled field-collected mosquitoes.

Daniel M. Chisenhall; Christopher J. Vitek; Stephanie L. Richards; Christopher N. Mores

ABSTRACT Testing field-caught mosquito collections can result in thousands of pools, and testing pools of 50 mosquitoes each can be both time consuming and cost prohibitive. Consequently, we have developed an alternative approach to testing mosquito pools for arboviruses, utilizing a superpool strategy. When mosquito samples are processed for extraction of viral RNA and subsequent virus testing via quantitative real-time polymerase chain reaction, each pool is tested individually. Using the method described here, 0.025 ml from each of 10 pools is combined into a superpool for RNA extraction and testing. When a virus-positive superpool sample is found, each of the original 10 pools that constitute this sample is tested individually in order to find the specific positive sample. By retesting the original samples after the initial superpool screen, we are still able to obtain reliable estimates for minimum infection rates or maximum likelihood estimations. To test this principle, we created controlled mosquito pools of known titer and subjected them to our superpool process. We were able to detect our entire range of laboratory-created pools as being West Nile virus (WNV) positive. In 2005, field surveillance efforts from our laboratory resulted in over 4,000 mosquito pools tested, with 8 resulting WNV-positive samples. We found that all of these field samples were detected as WNV positive using the superpool method and contained calculated virus titers from <0.1 to 4.1 log10 plaque-forming units/ml WNV, indicating that the limit of superpool detection of WNV is below this point. These results reveal that the superpool method could be accurately used to detect WNV in field-collected specimens.


Journal of Vector Ecology | 2009

Climate and geographic trends in hatch delay of the treehole mosquito, Aedes triseriatus Say (Diptera: Culicidae)

Camilo E. Khatchikian; John J. Dennehy; Christopher J. Vitek; Todd P. Livdahl

Eggs of Aedes triseriatus mosquitoes are stimulated to hatch when inundated with water, but only a small fraction of eggs from the same batch will hatch for any given stimulus. Similar hatching or germination patterns are observed in desert plants, copepods, rotifers, insects, and many other species. Bet hedging theory suggests that parents stagger offspring emergence into vulnerable life history stages in order to avoid catastrophic reproductive failures. For Ae. triseriatus, a treehole breeding mosquito, immediate hatching of an entire clutch leaves all of the parents progeny vulnerable to extinction in the event of a severe drought. Natural selection has likely favored parents that pursued a bet hedging strategy where the risk of reproductive failure is distributed over time. Considering treehole mosquitoes, bet hedging theory could be used to predict that hatch delay would be positively correlated with the likelihood of drought. To test this prediction, we collected Ae. triseriatus from habitats that varied widely in mean annual precipitation and exposed them to several hatch stimuli in the laboratory. Here we report that, as predicted, Ae. triseriatus eggs from high precipitation regions showed less hatch delay than areas of low precipitation. This strategy probably allows Ae. triseriatus to cope with the wide variety of climatic conditions that it faces in its extensive geographical range.


Journal of Medical Entomology | 2014

Dengue Vectors, Human Activity, and Dengue Virus Transmission Potential in the Lower Rio Grande Valley, Texas, United States

Christopher J. Vitek; Joann A. Gutierrez; Frank J. Dirrigl

ABSTRACT Dengue virus is an emerging disease of concern in the Americas. Recent outbreaks in Florida highlight the potential for the virus to return to the United States. The Lower Rio Grande Valley region of Texas directly borders Mexico, and has experienced dengue transmission in the past concurrent with outbreaks in Mexico along the border region. We examined the potential for dengue virus transmission by examining the vectors in the region, as well as assessing human behavior. We further hypothesized that dengue vector abundance would influence human behavior. Two dengue vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), were found in the region in high abundance. More mosquitoes were collected in rural sites and sites with high vegetation. Of the two species, only Ae. albopictus showed any significant habitat preferences, being more common in rural site. While there was no correlation between human behavior and mosquito abundance, the results support a significant correlation between knowledge of mosquitoes and dengue virus and behavioral practices that might reduce risk of disease transmission. Dengue risk may be higher in certain regions of the Lower Rio Grande Valley based on socioeconomic conditions, specifically in economically poor regions such as the undeveloped colonias found in the region. Because of the proximity of this region to an area with endemic dengue, continued surveillance and risk assessment is suggested.


Environmental Entomology | 2010

Effects of Forced Egg Retention on the Temporal Progression of West Nile Virus Infection in Culex pipiens quinquefasciatus (Diptera: Culicidae)

Chelsea T. Smartt; Stephanie L. Richards; Sheri L. Anderson; Christopher J. Vitek

ABSTRACT Environmental factors that impact the biology of mosquito vectors can have epidemiological implications. Lack of oviposition sites facilitated by environmental factors such as temperature and drought can often force Culex spp. mosquitoes to retain their eggs. Culex pipiens quinquefasciatus Say were fed blood meals containing West Nile virus (WNV; family Flaviviridae, genus Flavivirus) and either allowed to oviposit or forced to retain their eggs through different time points postinfection (9, 13, 20, 27 d) at 28°C. Oviposition status did not significantly affect rates of WNV infection (% with virus-positive bodies), dissemination (% with virus-positive legs), or transmission (% with virus-positive saliva) for any of the tested time points. As expected, WNV titers in bodies and legs were significantly (P < 0.05) higher at late time points compared with early time points. No significant differences were observed in WNV titers in saliva between time points. There were no significant effects of oviposition status on virus titers of bodies, legs, or saliva. However, we found that egg retention may increase vector competence at early and late time points after infection and that a single oviposition event may decrease vector competence, possibly by activating an immune response against the virus. Environmental changes that influence mosquito biology are important determinants of virus transmission, and further studies are needed to assess the effects of drought on virus transmission risk and how these interactions affect our interpretation of field data.


Journal of Medical Entomology | 2009

Hatch Plasticity in Response to Varied Inundation Frequency in Aedes albopictus

Christopher J. Vitek; Todd P. Livdahl

ABSTRACT Eggs of container-breeding mosquitoes are able to withstand drought conditions as an egg and hatch when submerged. Frequent rainfall can be simulated by frequent submersion, and drought conditions can be simulated by infrequent submersion. We examined the hatch response of Aedes albopictus (Skuse) eggs to simulated drought conditions. Ae. albopictus eggs from a strain originating outside Kobe, Japan, were subjected to one of three treatments; high-frequency hatch stimulation consisting of submerging the eggs in a nutrient broth mixture every 3 d, low-frequency hatch stimulation consisting of submerging the eggs every 7 d, and delayed high-frequency hatch stimulation. Eggs that were subjected to lower-frequency stimulation showed a significant decrease in hatch delay, which was the opposite of the predicted response. This decrease in hatch delay may be an example of hatch plasticity in response to drought conditions. This response could not be explained as a result of the difference in the ages of the eggs on any given stimulus. A decreased hatch delay response to potential drought conditions combined with rapid larval development may enable Ae. albopictus, whose eggs are not as desiccation resistant as some other container-breeding mosquitoes, to survive extended drought.


Environmental health insights | 2014

Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA

Samantha R. Champion; Christopher J. Vitek

The South Texas region has a historical record of occasional dengue outbreaks. The recent introduction of chikungunya virus to the Caribbean suggests that this disease may be a concern as well. Six different cities and three field habitat types (residential, tire shops, and cemeteries) were examined for evidence of habitat and longitudinal preference of two vector species, Aedes aegypti and Aedes albopictus. A. aegypti was more prevalent in tire shop sites, while A. albopictus was more prevalent in cemetery sites. In residential sites, the relative abundance of the two species varied with longitude, with A. albopictus being more abundant near the coast, and A. aegypti being more abundant inland. There was also a temporal variation, with A. aegypti declining in frequency over time in residential sites. These results have implications for control strategies and disease risk and suggest a greater need for increased surveillance and research in the region.


Journal of Parasitology | 2017

Temporal Variation in the Abundance and Timing of Daily Activity of Chagas Disease Vector Triatoma gerstaeckeri (Stål, 1859) in a Natural Habitat in the Lower Rio Grande Valley, South Texas

A. Flores; Christopher J. Vitek; T. P. Feria-Arroyo; B. L. Fredensborg

Abstract Chagas disease caused by Trypanosoma cruzi is a burden to millions of people in South and Central America. A sylvatic life cycle of the parasite exists in the Southern United States, but recent studies indicate an active peri-domestic life cycle of T. cruzi in Texas. The United States–Mexico border region in Texas displays areas of high poverty and sub-standard housing conditions which are important risk factors for a potential spill-over transmission to a domestic life cycle including humans. The objectives of the study were to examine short- and long-term temporal variation in vector activity and to evaluate the effect of different combinations of attractants on the capture of potential triatomine vectors. We collected local triatomine vectors (all of them identified as Triatoma gerstaeckeri) from a natural habitat in South Texas during the course of a year. The exact time of collection was recorded to examine the timing of flight activity of the triatomine vector. We also conducted a comparative study of the efficiency of 2 commonly used attractants (light and CO2) and the combination of those on the capture rate of Tr. gerstaeckeri. Our study indicates a short season of dispersal of Tr. gerstaeckeri (April/May) and it suggests a unimodal distribution of activity peaking between 2 and 3 hr after sunset. Ultra-violet light served as the main attractant of Tr. gerstaeckeri while CO2 from dry ice did not significantly contribute to the collection of vectors. The pronounced timing of activity in Tr. gerstaeckeri reported in this study contributes to our understanding of the epidemiology of T. cruzi in wildlife and its potential as a Chagas disease vector to humans in the Rio Grande Valley, South Texas.


Florida Entomologist | 2017

Morganella morganii (Enterobacteriales: Enterobacteriaceae) is a lethal pathogen of Mexican fruit fly (Diptera: Tephritidae) larvae

Bacilio Salas; Hugh E. Conway; Erin L. Schuenzel; Kristen Hopperstad; Christopher J. Vitek; Don C. Vacek

Abstract Tephritid pests, such as the Mexican fruit fly, Anastrepha ludens (Loew), represent a major threat to fruit production worldwide. In order to control these pests, sterile insect technique is used to suppress and eradicate wild populations. For this control method to be successful, hundreds of millions of flies must be produced weekly in mass rearing facilities. The large quantity of artificial diet and close proximity of flies at various life stages allows bacteria from family Enterobacteriaceae, Bacillaceae, Pseudomonadaceae, and others to multiply and spread more easily. In this study, bacteria with a possible pathogenic effect were isolated from Mexican fruit fly eggs and dead Mexican fruit fly larvae. Two strains of bacteria associated with dead and dying larvae were identified using the 16S rRNA sequence as a species of Morganella. Further sequencing of multiple genes and the entire genomes identified both strains as Morganella morganii. Pathogenicity tests were completed to assess this bacterium as a Mexican fruit fly pathogen. Several measures of pathogenicity including effects on larval and pupal weight, adult percent emergence, and flight ability were measured for the 2 strains of Morganella compared against a control. In all cases, the presence of the Morganella strains significantly reduced all quality control measurements compared to the control. Also, at 105 colony forming units per ml or higher levels of inoculum, the presence of Morganella resulted in 100% mortality of larvae. This study illustrates that Morganella morganii is an extremely lethal pathogen of mass reared Mexican fruit flies.

Collaboration


Dive into the Christopher J. Vitek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Roundy

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Grace Leal

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jing H. Huang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kathryn A. Hanley

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar

Nikos Vasilakis

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ruimei Yun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Sasha R. Azar

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge