Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Winrow is active.

Publication


Featured researches published by Christopher J. Winrow.


Journal of Molecular Neuroscience | 2007

Distribution of histone deacetylases 1-11 in the rat brain

Ron S. Broide; Jeff M. Redwine; Najla Aftahi; Warren G. Young; Floyd E. Bloom; Christopher J. Winrow

Although protein phosphorylation has been characterized more extensively, modulation of the acetylation state of signaling molecules is now being recognized as a key means of signal transduction. The enzymes responsible for mediating these changes include histone acetyl transferases and histone deacetylases (HDACs). Members of the HDAC family of enzymes have been identified as potential therapeutic targets for diseases ranging from cancer to ischemia and neurode generation. We initiated a project to conduct comprehensive gene expression mapping of the 11 HDAC isoforms (HDAC1-11) (classes I, II, and IV) throughout the rat brain using high-resolution in situ hybridization (ISH) and imaging technology. Internal and external data bases were employed to identify the appropriate rat sequence information for probe selection. In addition, immunohistochemistry was performed on these samples to separately examine HDAC expression in neurons, astrocytes, oligodendrocytes, and endothelial cells in the CNS. This double-labeling approach enabled the identification of specific cell types in which the individual HDACs were expressed. The signals obtained by ISH were compared to radiolabeled standards and thereby enabled semiquantitative analysis of individual HDAC isoforms and defined relative levels of gene expression in >50 brain regions. This project produced an extensive atlas of 11 HDAC isoforms throughout the rat brain, including cell type localization, providing a valuable resource for examining the roles of specific HDACs in the brain and the development of future modulators of HDAC activity.


Journal of Medicinal Chemistry | 2010

Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia.

Christopher D. Cox; Michael J. Breslin; David B. Whitman; John D. Schreier; Georgia B. McGaughey; Michael J. Bogusky; Anthony J. Roecker; Swati P. Mercer; Rodney A. Bednar; Wei Lemaire; Joseph G. Bruno; Duane R. Reiss; C. Meacham Harrell; Kathy L. Murphy; Susan L. Garson; Scott M. Doran; Thomayant Prueksaritanont; Wayne B. Anderson; Cuyue Tang; Shane Roller; Tamara D. Cabalu; Donghui Cui; George D. Hartman; Steven D. Young; Ken S. Koblan; Christopher J. Winrow; John J. Renger; Paul J. Coleman

Despite increased understanding of the biological basis for sleep control in the brain, few novel mechanisms for the treatment of insomnia have been identified in recent years. One notable exception is inhibition of the excitatory neuropeptides orexins A and B by design of orexin receptor antagonists. Herein, we describe how efforts to understand the origin of poor oral pharmacokinetics in a leading HTS-derived diazepane orexin receptor antagonist led to the identification of compound 10 with a 7-methyl substitution on the diazepane core. Though 10 displayed good potency, improved pharmacokinetics, and excellent in vivo efficacy, it formed reactive metabolites in microsomal incubations. A mechanistic hypothesis coupled with an in vitro assay to assess bioactivation led to replacement of the fluoroquinazoline ring of 10 with a chlorobenzoxazole to provide 3 (MK-4305), a potent dual orexin receptor antagonist that is currently being tested in phase III clinical trials for the treatment of primary insomnia.


Annual Review of Pharmacology and Toxicology | 2011

Orexin Receptors: Pharmacology and Therapeutic Opportunities

Thomas E. Scammell; Christopher J. Winrow

Orexin-A and -B (also known as hypocretin-1 and -2) are neuropeptides produced in the lateral hypothalamus that promote many aspects of arousal through the OX1 and OX2 receptors. In fact, they are necessary for normal wakefulness, as loss of the orexin-producing neurons causes narcolepsy in humans and rodents. This has generated considerable interest in developing small-molecule orexin receptor antagonists as a novel therapy for the treatment of insomnia. Orexin antagonists, especially those that block OX2 or both OX1 and OX2 receptors, clearly promote sleep in animals, and clinical results are encouraging: Several compounds are in Phase III trials. As the orexin system mainly promotes arousal, these new compounds will likely improve insomnia without incurring many of the side effects encountered with current medications.


Journal of Neurogenetics | 2011

Promotion of Sleep by Suvorexant—A Novel Dual Orexin Receptor Antagonist

Christopher J. Winrow; Anthony L. Gotter; Christopher D. Cox; Scott M. Doran; Pamela L. Tannenbaum; Michael J. Breslin; Susan L. Garson; Steven V. Fox; Charles M. Harrell; Joanne Stevens; Duane R. Reiss; Donghui Cui; Paul J. Coleman; John J. Renger

Abstract: Orexins/hypocretins are key neuropeptides responsible for regulating central arousal and reward circuits. Two receptors respond to orexin signaling, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) with partially overlapping nervous system distributions. Genetic studies suggest orexin receptor antagonists could be therapeutic for insomnia and other disorders with disruptions of sleep and wake. Suvorexant (MK-4305) is a potent, selective, and orally bioavailable antagonist of OX1R and OX2R currently under clinical investigation as a novel therapy for insomnia. Examination of Suvorexant in radioligand binding assays using tissue from transgenic rats expressing the human OX2R found nearly full receptor occupancy (>90%) at plasma exposures of 1.1 μM. Dosed orally Suvorexant significantly and dose-dependently reduced locomotor activity and promoted sleep in rats (10, 30, and 100 mg/kg), dogs (1 and 3 mg/kg), and rhesus monkeys (10 mg/kg). Consistent cross-species sleep/wake architecture changes produced by Suvorexant highlight a unique opportunity to develop dual orexin antagonists as a novel therapy for insomnia.


Nature Genetics | 2003

Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity

Christopher J. Winrow; Matthew L. Hemming; Duane M. Allen; Gary B. Quistad; John E. Casida; Carrolee Barlow

Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte−/− mice die after embryonic day 8, and Nte+/− mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte+/− and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.


Pharmacological Reviews | 2012

International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology

Anthony L. Gotter; Andrea L. Webber; Paul J. Coleman; John J. Renger; Christopher J. Winrow

Orexin signaling is essential for normal regulation of arousal and behavioral state control and represents an attractive target for therapeutics combating insomnia. Alternatively termed hypocretins, these neuropeptides were named to reflect sequence similarity to incretins and their potential to promote feeding. Current nomenclature reflects these molecular and biochemical discovery approaches in which HCRT, HCRTR1, and HCRTR2 genes encode prepro-orexin, the orexin 1 receptor (OX1) and the orexin 2 receptor (OX2)—gene names designated by the Human Genome Organization and receptor names designated by the International Union of Basic and Clinical Pharmacology. Orexinergic neurons are most active during wakefulness and fall silent during inactive periods, a prolonged disruption in signaling most profoundly resulting in hypersomnia and narcolepsy. Hcrtr2 mutations underlie the etiology of canine narcolepsy, deficiencies in orexin-producing neurons are observed in the human disorder, and ablation of mouse orexin neurons or the Hcrt gene results in a narcolepsy-cataplexy phenotype. The development of orexin receptor antagonists and genetic models targeting components of the orexin pathway have elucidated the OX2 receptor-specific role in histamine-mediated arousal and the contribution of both receptors in brainstem pathways involved in vigilance state gating. Orexin receptor antagonists of varying specificity uncovered additional roles beyond sleep and feeding that include addiction, depression, anxiety, and potential influences on peripheral physiology. Combined genetic and pharmacological approaches indicate that orexin signaling may represent a confluence of sleep, feeding, and reward pathways. Selective orexin receptor antagonism takes advantage of these properties toward the development of novel insomnia therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evidence that mouse brain neuropathy target esterase is a lysophospholipase

Gary B. Quistad; Carrolee Barlow; Christopher J. Winrow; Susan E. Sparks; John E. Casida

Neuropathy target esterase (NTE) is inhibited by several organophosphorus (OP) pesticides, chemical warfare agents, lubricants, and plasticizers, leading to OP-induced delayed neuropathy in people (>30,000 cases of human paralysis) and hens (the best animal model for this demyelinating disease). The active site region of NTE as a recombinant protein preferentially hydrolyzes lysolecithin, suggesting that this enzyme may be a type of lysophospholipase (LysoPLA) with lysolecithin as its physiological substrate. This hypothesis is tested here in mouse brain by replacing the phenyl valerate substrate of the standard NTE assay with lysolecithin for an “NTE-LysoPLA” assay with four important findings. First, NTE-LysoPLA activity, as the NTE activity, is 41–45% lower in Nte-haploinsufficient transgenic mice than in their wild-type littermates. Second, the potency of six delayed neurotoxicants or toxicants as in vitro inhibitors varies from IC50 0.02 to 13,000 nM and is essentially the same for NTE-LysoPLA and NTE (r2 = 0.98). Third, the same six delayed toxicants administered i.p. to mice at multiple doses inhibit brain NTE-LysoPLA and NTE to the same extent (r2 = 0.90). Finally, their in vivo inhibition of brain NTE-LysoPLA generally correlates with delayed toxicity. Therefore, OP-induced delayed toxicity in mice, and possibly the hyperactivity associated with NTE deficiency, may be due to NTE-LysoPLA inhibition, leading to localized accumulation of lysolecithin, a known demyelinating agent and receptor-mediated signal transducer. This mouse model has some features in common with OP-induced delayed neuropathy in hens and people but differs in the neuropathological signs and apparently the requirement for NTE aging.


ChemMedChem | 2012

Discovery of [(2R,5R)-5-{[(5-fluoropyridin-2-yl)oxy]methyl}-2-methylpiperidin-1-yl][5-methyl-2-(pyrimidin-2-yl)phenyl]methanone (MK-6096): a dual orexin receptor antagonist with potent sleep-promoting properties.

Paul J. Coleman; John D. Schreier; Christopher D. Cox; Michael J. Breslin; David B. Whitman; Michael J. Bogusky; Georgia B. McGaughey; Rodney A. Bednar; Wei Lemaire; Scott M. Doran; Steven V. Fox; Susan L. Garson; Anthony L. Gotter; C. Meacham Harrell; Duane R. Reiss; Tamara D. Cabalu; Donghui Cui; Thomayant Prueksaritanont; Joanne Stevens; Pamela L. Tannenbaum; Richard G. Ball; Joyce Stellabott; Steven D. Young; George D. Hartman; Christopher J. Winrow; John J. Renger

Insomnia is a common disorder that can be comorbid with other physical and psychological illnesses. Traditional management of insomnia relies on general central nervous system (CNS) suppression using GABA modulators. Many of these agents fail to meet patient needs with respect to sleep onset, maintenance, and next‐day residual effects and have issues related to tolerance, memory disturbances, and balance. Orexin neuropeptides are central regulators of wakefulness, and orexin antagonism has been identified as a novel mechanism for treating insomnia with clinical proof of concept. Herein we describe the discovery of a series of α‐methylpiperidine carboxamide dual orexin 1 and orexin 2 receptor (OX1R/OX2R) antagonists (DORAs). The design of these molecules was inspired by earlier work from this laboratory in understanding preferred conformational properties for potent orexin receptor binding. Minimization of 1,3‐allylic strain interactions was used as a design principle to synthesize 2,5‐disubstituted piperidine carboxamides with axially oriented substituents including DORA 28. DORA 28 (MK‐6096) has exceptional in vivo activity in preclinical sleep models, and has advanced into phase II clinical trials for the treatment of insomnia.


Progress in Brain Research | 2012

Orexin receptors as therapeutic drug targets.

Anthony L. Gotter; Anthony J. Roecker; Richard Hargreaves; Paul J. Coleman; Christopher J. Winrow; John J. Renger

Orexin (hypocretin) receptor antagonists stand as a model for the development of targeted CNS small-molecule therapeutics. The identification of mutations in the gene for the orexin 2 receptor responsible for canine narcolepsy, the demonstration of a hypersomnolence phenotype in hypocretin knockout mice and the disruption in orexin signaling in narcoleptic patients provides clear genetic proof of concept for targeting orexin-induced arousal for the treatment of insomnia. The full characterization of the genes encoding orexin and its two cognate receptors enabled the rapid development of in vitro and ex vivo assays with which to identify lead compound structures and to optimize potency and pharmacokinetic properties. Polysomnographic measures with cross-species translatability capable of measuring the sleep-promoting effects of orexin receptor antagonists from mice to man, and the existence of knockout models not only allow efficacy assessment but also the demonstration of mechanism of action. Focused efforts by a number of groups have identified potent compounds of diverse chemical structure with differential orexin receptor selectivity for either the orexin 1 receptor (OX₁R) or the orexin 2 receptor (OX₂R), or both. This work has yielded tool compounds that, along with genetic models, have been used to specifically define the role these receptors in mediating orexin-induced arousal and vigilance state control. Optimized dual receptor antagonists with favorable pharmacokinetic and safety profiles have now demonstrated efficacy in clinical development and represent a distinct mechanism of action for the treatment of insomnia relative to current standard of care.


Neuropharmacology | 2010

Orexin receptor antagonism prevents transcriptional and behavioral plasticity resulting from stimulant exposure

Christopher J. Winrow; Keith Q. Tanis; Duane R. Reiss; Alison M. Rigby; Jason M. Uslaner; Victor N. Uebele; Scott M. Doran; Steven V. Fox; Susan L. Garson; Anthony L. Gotter; David M. Levine; Anthony J. Roecker; Paul J. Coleman; Kenneth S. Koblan; John J. Renger

Orexin is a key neurotransmitter of central arousal and reward circuits in the CNS. Two receptors respond to orexin signaling, Orexin 1 Receptor (OX1R) and Orexin 2 Receptor (OX2R) with partially overlapping brain distributions. Genetic and pharmacological studies suggest orexin receptor antagonists could provide therapeutic benefit for insomnia and other disorders in which sleep/wake cycles are disrupted. Preclinical data has also emerged showing that the orexin system is involved in the behavioral and neurological effects of drugs of abuse (Aston-Jones et al., 2009; Harris et al., 2005). Here we report sleep promoting effects of a recently described small molecule dual orexin receptor OX1R and OX2R antagonist. This dual orexin receptor antagonist (DORA) also inhibits the ability of subchronic amphetamine to produce behavioral sensitization measured 10 days following pre-treatment. Transcriptional profiling of isolated reward and arousal circuits from brains of behaviorally sensitized animals showed that the DORA blocked the significant alteration of gene expression levels in response to amphetamine exposure, particularly those associated with synaptic plasticity in the VTA. Further, DORA attenuates the ability of nicotine to induce reinstatement of extinguished responding for a reinforcer, demonstrating selectivity of the effect to reward pathways and not to food intake. In summary, these data demonstrate efficacy of a dual orexin receptor antagonist for promotion of sleep and suggest that pharmacological inhibition of the orexin system may play a role in both prevention of drug-induced plasticity and drug-relapse.

Collaboration


Dive into the Christopher J. Winrow's collaboration.

Top Co-Authors

Avatar

Anthony L. Gotter

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Susan L. Garson

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Steven V. Fox

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Pamela L. Tannenbaum

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Joanne Stevens

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Roecker

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

C. Meacham Harrell

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Cox

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge