Christopher L. Hepplewhite
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher L. Hepplewhite.
Journal of Geophysical Research | 2008
M. J. Alexander; John C. Gille; Charles Cavanaugh; M. T. Coffey; Cheryl Craig; Thomas Eden; Gene Francis; Chris Halvorson; James W. Hannigan; Rashid Khosravi; Douglas E. Kinnison; Hyunah Lee; S. T. Massie; B. Nardi; John J. Barnett; Christopher L. Hepplewhite; Alyn Lambert; V. C. Dean
analyzed to derive global properties of gravity waves. We describe a wavelet analysis technique that determines covarying wave temperature amplitude in adjacent temperature profile pairs, the wave vertical wavelength as a function of height, and the horizontal wave number along the line joining each profile pair. The analysis allows a local estimate of the magnitude of gravity wave momentum flux as a function of geographic location and height on a daily basis. We examine global distributions of these gravity wave properties in the monthly mean and on an individual day, and we also show sample instantaneous wave events observed by HIRDLS. The results are discussed in terms of previous satellite and radiosonde observational analyses and middle atmosphere general circulation model studies that parameterize gravity wave effects on the mean flow. The high vertical and horizontal resolution afforded by the HIRDLS measurements allows the analysis of a wider range of wave vertical and horizontal wavelengths than previous studies and begins to show individual wave events associated with mountains and convection in high detail. Mountain wave observations show clear propagation to altitudes in the mesosphere.
Journal of Geophysical Research | 2008
B. Nardi; John C. Gille; John J. Barnett; Cora E. Randall; V. Lynn Harvey; Alison Waterfall; W. Jolyon Reburn; Thierry Leblanc; Thomas J. McGee; Laurence Twigg; Anne M. Thompson; Sophie Godin-Beekmann; Peter F. Bernath; Bojan Bojkov; C. D. Boone; Charles Cavanaugh; M. T. Coffey; James Craft; Cheryl Craig; V. C. Dean; Thomas Eden; Gene Francis; L. Froidevaux; Chris Halvorson; James W. Hannigan; Christopher L. Hepplewhite; Douglas E. Kinnison; Rashid Khosravi; Charlie Krinsky; Alyn Lambert
Comparisons of the latest High Resolution Dynamics Limb Sounder (HIRDLS) ozone retrievals (v2.04.09) are made with ozonesondes, ground-based lidars, airborne lidar measurements made during the Intercontinental Chemical Transport Experiment–B, and satellite observations. A large visual obstruction blocking over 80% of the HIRDLS field of view presents significant challenges to the data analysis methods and implementation, to the extent that the radiative properties of the obstruction must be accurately characterized in order to adequately correct measured radiances. The radiance correction algorithms updated as of August 2007 are used in the HIRDLS v2.04.09 data presented here. Comparisons indicate that HIRDLS ozone is recoverable between 1 and 100 hPa at middle and high latitudes and between 1 and 50 hPa at low latitudes. Accuracy of better than 10% is indicated between 1 and 30 hPa (HIRDLS generally low) by the majority of the comparisons with coincident measurements, and 5% is indicated between 2 and 10 hPa when compared with some lidars. Between 50 and 100 hPa, at middle and high latitudes, accuracy is 10–20%. The ozone precision is estimated to be generally 5–10% between 1 and 50 hPa. Comparisons with ozonesondes and lidars give strong indication that HIRDLS is capable of resolving fine vertical ozone features (1–2 km) in the region between 1 and 50 hPa. Development is continuing on the radiance correction and the cloud detection and filtering algorithms, and it is hoped that it will be possible to achieve a further reduction in the systematic bias and an increase in the measurement range downward to lower heights (at pressures greater than 50–100 hPa).
Journal of Geophysical Research | 2009
Rashid Khosravi; Alyn Lambert; Hyunah Lee; John C. Gille; John J. Barnett; Gene Francis; David P. Edwards; Chris Halvorson; S. T. Massie; Cheryl Craig; Charles Krinsky; J. M. McInerney; Ken Stone; Thomas Eden; B. Nardi; Christopher L. Hepplewhite; William G. Mankin; M. T. Coffey
Received 18 February 2009; revised 22 April 2009; accepted 26 June 2009; published 23 October 2009. [1] The retrieval algorithm for the High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard NASA’s Earth Observing System (EOS) Aura satellite is presented. The algorithm is based on optimal estimation theory, using a modified Levenberg-Marquardt approach for the iterative solution. Overview of the retrieval scheme, convergence criteria, and the forward models is given. Treatments of clouds and aerosols as well as line-of-sight gradients in temperature are described. The retrievals are characterized by high vertical resolution of 1 km and negligible a priori contribution for all products in regions of high signal-to-noise ratio (SNR) (most of the retrieval ranges). It is shown that these characteristics hold for all latitudes along a HIRDLS orbit. The weighting functions are narrow and show good sensitivity to temperature or gas perturbations in regions of high SNR. The retrieval error predicted by the algorithm consists of radiometric noise, pointing jitter error, smoothing error, and forward model error. For temperature, these components are shown for a midlatitude profile as well as for a full orbit. The predicted temperature error varies from 0.5 K to 0.8 K from the upper troposphere to the stratopause region, consistent with the empirical estimates given by Gille et al. (2008). For O3 and HNO3, the predicted errors and their useful pressure ranges are, respectively, 10–5% from 50 to 1 hPa and 5–10% from 100 to 10 hPa. These results are based on version V004 of the retrieved data, released in August 2008 to the Goddard Earth Sciences Data and Information Services Center (http://daac.gsfc.nasa.gov).
Proceedings of SPIE | 2008
John J. Barnett; Christopher L. Hepplewhite; Scott M. Osprey; John C. Gille; R. Khosravi
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument was launched on the NASA Aura satellite in July 2004. HIRDLS is a joint project between the UK and USA, and is a mid-infrared limb emission sounder designed to measure the concentrations of trace species, cloud and aerosol, and temperature and pressure variations in the Earths atmosphere from the upper troposphere to the mesosphere. The instrument is intended to make measurements at both high vertical and horizontal spatial resolutions, but validating those measurements is difficult because few other measurements provide that vertical resolution sufficiently closely in time. However, the FORMOSAT-3/COSMIC suite of radio occultation satellites that exploit the U.S. GPS transmitters to obtain high resolution (~1 km) temperature profiles in the stratosphere does provide sufficient profiles nearly coincident with those from HIRDLS. Comparisons show a good degree intercorrelation between COSMIC and HIRDLS down to about 2 km resolution, with similar amplitudes for each, implying that HIRDLS and COSMIC are able to measure the same small scale features. The optical blockage that occurred within HIRDLS during launch does not seem to have affected this capability.
Environmental Toxicology and Chemistry | 2015
Jenna Roberts; Peter A. Bain; Anupama Kumar; Christopher L. Hepplewhite; David J. Ellis; Andrew G. Christy; Sara Beavis
Estrogenicity of sewage effluents, and related ecotoxicological effects in effluent-receiving environments, have been widely reported over the last 2 decades. However, relatively little attention has been given to other endocrine pathways that may be similarly disrupted by a growing list of contaminants of concern. Furthermore, the Australian evidence base is limited compared with those of Europe and North America. During a low dilution period in summer, the authors investigated multiple endocrine potencies in Australias largest inland sewage treatment plant (STP) and the Lower Molonglo/Upper Murrumbidgee effluent-receiving environment. This STP receives 900 L/s of mostly domestic wastewater from a population of 350 000, and contributes a high proportion of total flow in the lower catchment during dry periods. A panel of in vitro receptor-driven transactivation assays were used to detect (anti)estrogenic, (anti) androgenic, (anti)progestagenic, glucocorticoid, and peroxisome-proliferator activity at various stages of the sewage treatment process. Total estrogenic and (anti)androgenic potency was removed after primary and/or secondary treatment; however, total removal efficiency for glucocorticoid potency was poorer (53-66%), and progestagenic potency was found to increase along the treatment train. Estrogenicity was detected in surface waters and bed sediments upstream and downstream of the effluent outfall, at maximum levels 10 times lower than low-hazard thresholds. Glucocorticoid and progestagenic activity were found to persist to 4 km downstream of the effluent outfall, suggesting that future research is needed on these endocrine-disrupting chemical categories in effluent-receiving systems.
Proceedings of SPIE | 2005
John J. Barnett; Christopher L. Hepplewhite; L. Rokke; John C. Gille
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument was launched on the NASA Aura satellite in July 2004. HIRDLS is a joint project between the UK and USA, and is a mid-infrared limb emission sounder designed to measure the concentrations of trace species and aerosol, and temperature and pressure variations in the Earths atmosphere between about 8 and 100 km. The instrument is performing correctly except for a problem with radiometric views out from the main aperture. A series of tests has led to the conclusion that optical beam is obstructed between the scan mirror and the aperture by what is believed to be a piece of Kapton film that became detached during the ascent to orbit. The paper describes measurements aimed at mapping the geometric and radiometric properties of the obstruction using different positions of the aperture door, including in some cases where the sun was made to illuminate the aperture. The aim of the work is to facilitate atmospheric observations through a small part of the aperture which remains clear.
Proceedings of SPIE | 2005
Thomas Eden; John C. Gille; John J. Barnett; Christopher L. Hepplewhite; Christopher W. P. Palmer; John G. Whitney
The High Resolution Dynamics Limb Sounder (HIRDLS) flight instrument, which is currently in orbit on the NASA Aura Satellite, went through a pre-launch calibration at Oxford University during Autumn 2002. One of the calibration exercises was to characterize the radiometric signals of the HIRDLS proto-flight model (PFM). It was discovered during the data-analysis phase, that the radiometric data required special treatment. Because of the stringent radiometric requirements imposed on HIRDLS, these additional analyses were necessary. This manuscript will detail these specific analysis techniques that were used on the data and present results based on a full analysis of the data, including a complete accounting of the statistical error analysis.
Optical Science and Technology, SPIE's 48th Annual Meeting | 2003
Joseph L. Moorhouse; John J. Barnett; Karim Djotni; Christopher L. Hepplewhite; Christopher W. P. Palmer; Olusoji O. Oduleye; Trevor W. Walton; Robert E. J. Watkins; John G. Whitney; John C. Gille; Phillip I. Arter; Bruno Nardi
The techniques used to calibrate the field of view of the High Resolution Dynamics Limb Sounder (HIRDLS) instrument and the results of the calibration are presented. HIRDLS will be flown on the NASA EOS Aura platform. Both in-field and out-of-field calibrations were performed. The calibration results are compared to the requirements and, in the case of out-of-field, mechanisms explaining the results are discussed.
Optical Science and Technology, SPIE's 48th Annual Meeting | 2003
Christopher L. Hepplewhite; John J. Barnett; Karim Djotni; John G. Whitney; Justain N. Bracken; Roger Wolfenden; Frederick Row; Christopher W. P. Palmer; Robert E. J. Watkins; Rodney J. Knight; Peter F. Gray; Geoffory Hammond
A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.
Optical Science and Technology, SPIE's 48th Annual Meeting | 2003
Christopher L. Hepplewhite; Robert E. J. Watkins; Frederick Row; John J. Barnett; Daniel M. Peters; Christopher W. P. Palmer; Roger Wolfenden; Karim Djotni; Philip I. Arter
The pre-launch calibration of the HIRDLS instrument took place in a dedicated facility at the University of Oxford. One aspect of this calibration was the determination of the response of the instrument to black body radiation. This was achieved with the use of purpose built full aperture black body targets which were mounted in the vacuum chamber together with all of the calibration equipment. Special attention was placed on the absolute knowledge of the emission from these targets. This was done through a combination of thermometric sensor calibration traceable to the International Temperature Standard (ITS-90), surface emission measurements, cavity design and modeling and controlling the stray light sources in the vacuum chamber. This paper describes the design requirements, implementation and performance achieved.