Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher L. Ricupero is active.

Publication


Featured researches published by Christopher L. Ricupero.


Nature Medicine | 2012

Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia

Jiali Li; Jianmin Chen; Christopher L. Ricupero; Ronald P. Hart; Melanie S Schwartz; Alexander W. Kusnecov; Karl Herrup

Ataxia telangiectasia is a neurodegenerative disease caused by mutation of the Atm gene. Here we report that ataxia telangiectasia mutated (ATM) deficiency causes nuclear accumulation of histone deacetylase 4 (HDAC4) in neurons and promotes neurodegeneration. Nuclear HDAC4 binds to chromatin, as well as to myocyte enhancer factor 2A (MEF2A) and cAMP-responsive element binding protein (CREB), leading to histone deacetylation and altered neuronal gene expression. Blocking either HDAC4 activity or its nuclear accumulation blunts these neurodegenerative changes and rescues several behavioral abnormalities of ATM-deficient mice. Full rescue of the neurodegeneration, however, also requires the presence of HDAC4 in the cytoplasm, suggesting that the ataxia telangiectasia phenotype results both from a loss of cytoplasmic HDAC4 as well as its nuclear accumulation. To remain cytoplasmic, HDAC4 must be phosphorylated. The activity of the HDAC4 phosphatase, protein phosphatase 2A (PP2A), is downregulated by ATM-mediated phosphorylation. In ATM deficiency, enhanced PP2A activity leads to HDAC4 dephosphorylation and the nuclear accumulation of HDAC4. Our results define a crucial role of the cellular localization of HDAC4 in the events leading to ataxia telangiectasia neurodegeneration.


Experimental Hematology | 2008

Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

Loyal A. Goff; Shayne Boucher; Christopher L. Ricupero; Sara Fenstermacher; Mavis R. Swerdel; Lucas G. Chase; Christopher C. Adams; Jonathan D. Chesnut; Uma Lakshmipathy; Ronald P. Hart

OBJECTIVE Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression. MATERIALS AND METHODS Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling. RESULTS The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition. CONCLUSION Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways.


Stem Cell Research & Therapy | 2010

Efficient, high-throughput transfection of human embryonic stem cells

Jennifer C. Moore; Kristin Atze; Percy Luk Yeung; Alana J. Toro-Ramos; Cynthia Camarillo; Kevin Thompson; Christopher L. Ricupero; Mark A. Brenneman; Rick I. Cohen; Ronald P. Hart

IntroductionGenetic manipulation of human embryonic stem cells (hESC) has been limited by their general resistance to common methods used to introduce exogenous DNA or RNA. Efficient and high throughput transfection of nucleic acids into hESC would be a valuable experimental tool to manipulate these cells for research and clinical applications.MethodsWe investigated the ability of two commercially available electroporation systems, the Nucleofection® 96-well Shuttle® System from Lonza and the Neon™ Transfection System from Invitrogen to efficiently transfect hESC. Transfection efficiency was measured by flow cytometry for the expression of the green fluorescent protein and the viability of the transfected cells was determined by an ATP catalyzed luciferase reaction. The transfected cells were also analyzed by flow cytometry for common markers of pluripotency.ResultsBoth systems are capable of transfecting hESC at high efficiencies with little loss of cell viability. However, the reproducibility and the ease of scaling for high throughput applications led us to perform more comprehensive tests on the Nucleofection® 96-well Shuttle® System. We demonstrate that this method yields a large fraction of transiently transfected cells with minimal loss of cell viability and pluripotency, producing protein expression from plasmid vectors in several different hESC lines. The method scales to a 96-well plate with similar transfection efficiencies at the start and end of the plate. We also investigated the efficiency with which stable transfectants can be generated and recovered under antibiotic selection. Finally, we found that this method is effective in the delivery of short synthetic RNA oligonucleotides (siRNA) into hESC for knockdown of translation activity via RNA interference.ConclusionsOur results indicate that these electroporation methods provide a reliable, efficient, and high-throughput approach to the genetic manipulation of hESC.


Glia | 2008

Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen.

Hedong Li; Yu-Wen Chang; Kriti Mohan; Hui-Wen Su; Christopher L. Ricupero; Ajoeb Baridi; Ronald P. Hart; Martin Grumet

Radial glia are neural stem cells that exist only transiently during central nervous system (CNS) development, where they serve as scaffolds for neuronal migration. Their instability makes them difficult to study, and therefore we have isolated stabilized radial glial clones from E14.5 cortical progenitors (e.g., L2.3) after expression of v‐myc. Activated Notch1 intracellular region (actNotch1) promotes radial glia in the embryonic mouse forebrain (Gaiano et al., ( 2000 ), and when it was introduced into E14.5 cortical progenitors or radial glial clone L2.3, the cells exhibited enhanced radial morphology and increased expression of the radial glial marker BLBP. A representative clone of L2.3 cells expressing actNotch1 called NL2.3‐4 migrated more extensively than L2.3 cells in culture and in white matter of the adult rat spinal cord. Microarray and RT‐PCR comparisons of mRNAs expressed in these closely related clones showed extensive similarities, but differed significantly for certain mRNAs including several cell adhesion molecules. Cell adhesion assays demonstrated significantly enhanced adhesion to laminin of NL2.3‐4 by comparison to L2.3 cells. The laminin binding protein nidogen was the most highly induced adhesion molecule in NL2.3‐4, and immunological analyses indicated that radial glia synthesize and secrete nidogen. Adhesion of NL2.3‐4 cells to laminin was inhibited by anti‐nidogen antibodies and required the nidogen binding region in laminin, indicating that nidogen promotes cell adhesion to laminin. The combined results indicate that persistent expression of activated Notch1 maintains the phenotype of radial glial cells, inhibits their differentiation, and promotes their adhesion and migration on a laminin/nidogen complex.


Glia | 2013

Glutamate dehydrogenase 1 and SIRT4 regulate glial development.

Daniel Komlos; Kara D. Mann; Yue Zhuo; Christopher L. Ricupero; Ronald P. Hart; Alice Y. C. Liu; Bonnie L. Firestein

Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α‐ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP‐ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.


Developmental Neurobiology | 2008

Functional differentiation of a clone resembling embryonic cortical interneuron progenitors

Hedong Li; Yu Han; Caixia Bi; Jonathan Davila; Loyal A. Goff; Kevin Thompson; Mavis R. Swerdel; Cynthia Camarillo; Christopher L. Ricupero; Ronald P. Hart; Mark R. Plummer; Martin Grumet

We have generated clones (L2.3 and RG3.6) of neural progenitors with radial glial properties from rat E14.5 cortex that differentiate into astrocytes, neurons, and oligodendrocytes. Here, we describe a different clone (L2.2) that gives rise exclusively to neurons, but not to glia. Neuronal differentiation of L2.2 cells was inhibited by bone morphogenic protein 2 (BMP2) and enhanced by Sonic Hedgehog (SHH) similar to cortical interneuron progenitors. Compared with L2.3, differentiating L2.2 cells expressed significantly higher levels of mRNAs for glutamate decarboxylases (GADs), DLX transcription factors, calretinin, calbindin, neuropeptide Y (NPY), and somatostatin. Increased levels of DLX‐2, GADs, and calretinin proteins were confirmed upon differentiation. L2.2 cells differentiated into neurons that fired action potentials in vitro, and their electrophysiological differentiation was accelerated and more complete when cocultured with developing astroglial cells but not with conditioned medium from these cells. The combined results suggest that clone L2.2 resembles GABAergic interneuron progenitors in the developing forebrain.


PLOS ONE | 2014

A Positive Feedback Mechanism That Regulates Expression of miR-9 during Neurogenesis

Jonathan L. Davila; Loyal A. Goff; Christopher L. Ricupero; Cynthia Camarillo; Eileen N. Oni; Mavis R. Swerdel; Alana J. Toro-Ramos; Jiali Li; Ronald P. Hart

MiR-9, a neuron-specific miRNA, is an important regulator of neurogenesis. In this study we identify how miR-9 is regulated during early differentiation from a neural stem-like cell. We utilized two immortalized rat precursor clones, one committed to neurogenesis (L2.2) and another capable of producing both neurons and non-neuronal cells (L2.3), to reproducibly study early neurogenesis. Exogenous miR-9 is capable of increasing neurogenesis from L2.3 cells. Only one of three genomic loci capable of encoding miR-9 was regulated during neurogenesis and the promoter region of this locus contains sufficient functional elements to drive expression of a luciferase reporter in a developmentally regulated pattern. Furthermore, among a large number of potential regulatory sites encoded in this sequence, Mef2 stood out because of its known pro-neuronal role. Of four Mef2 paralogs, we found only Mef2C mRNA was regulated during neurogenesis. Removal of predicted Mef2 binding sites or knockdown of Mef2C expression reduced miR-9-2 promoter activity. Finally, the mRNA encoding the Mef2C binding partner HDAC4 was shown to be targeted by miR-9. Since HDAC4 protein could be co-immunoprecipitated with Mef2C protein or with genomic Mef2 binding sequences, we conclude that miR-9 regulation is mediated, at least in part, by Mef2C binding but that expressed miR-9 has the capacity to reduce inhibitory HDAC4, stabilizing its own expression in a positive feedback mechanism.


Developmental Neurobiology | 2012

Isolation of a novel rat neural progenitor clone that expresses dlx family transcription factors and gives rise to functional gabaergic neurons in culture

Hedong Li; Anna T. Hader; Yu R. Han; Joseph A. Wong; Joanne Babiarz; Christopher L. Ricupero; Sasha Blue Godfrey; John P. Corradi; Myles Fennell; Ronald P. Hart; Mark R. Plummer; Martin Grumet

Gamma‐aminobutyric acid (GABA) ergic interneurons are lost in conditions including epilepsy and central nervous system injury, but there are few culture models available to study their function. Toward the goal of obtaining renewable sources of GABAergic neurons, we used the molecular profile of a functionally incomplete GABAergic precursor clone to screen 17 new clones isolated from GFP+ rat E14.5 cortex and ganglionic eminence (GE) that were generated by viral introduction of v‐myc. The clones grow as neurospheres in medium with FGF2, and after withdrawal of FGF2, they exhibit varying patterns of differentiation. Transcriptional profiling and quantitative reverse transcriptase polymerase chain reaction (RT‐PCR) indicated that one clone (GE6) expresses high levels of mRNAs encoding Dlx1, 2, 5, and 6, glutamate decarboxylases, and presynaptic proteins including neuropeptide Y and somatostatin. Protein expression confirmed that GE6 is a progenitor with restricted differentiation giving rise mostly to neurons with GABAergic markers. In cocultures with hippocampal neurons, GE6 neurons became electrically excitable and received both inhibitory and excitatory synapses. After withdrawal of FGF2 in cultures of GE6 alone, neurons matured to express βIII‐tubulin, and staining for synaptophysin and vesicular GABA transporter were robust after 1–2 weeks of differentiation. GE6 neurons also became electrically excitable and displayed synaptic activity, but synaptic currents were carried by chloride and were blocked by bicuculline. The results suggest that the GE6 clone, which is ventrally derived from the GE, resembles GABAergic interneuron progenitors that migrate into the developing forebrain. This is the first report of a relatively stable fetal clone that can be differentiated into GABAergic interneurons with functional synapses.


Colloids and Surfaces B: Biointerfaces | 2011

Microscale plasma-initiated patterning of electrospun polymer scaffolds

Roberto Delgado-Rivera; Jeremy Griffin; Christopher L. Ricupero; Martin Grumet; Sally Meiners; Kathryn E. Uhrich

Microscale plasma-initiated patterning (μPIP) is a novel micropatterning technique used to create biomolecular micropatterns on polymer surfaces. The patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. Preferential adsorption of the biomolecules onto either the plasma-exposed (hydrophilic) or plasma-protected (hydrophobic) regions leads to the biomolecular micropatterns. In the current work, laminin-1 was applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. Radial glial clones (neural precursors) selectively adhered to these patterned matrices following the contours of proteins on the surface. This work demonstrates that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization.


Methods of Molecular Biology | 2013

Epigenome Analysis of Pluripotent Stem Cells

Christopher L. Ricupero; Mavis R. Swerdel; Ronald P. Hart

Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness, and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to enrich genomic fragments using antibodies against specific chromatin modifications, such as DNA-binding proteins or modified histones. Until recently, many ChIP protocols required large numbers of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain.

Collaboration


Dive into the Christopher L. Ricupero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loyal A. Goff

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge