Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Lowell Gerardy is active.

Publication


Featured researches published by Christopher Lowell Gerardy.


The Astrophysical Journal | 2002

THE TYPE IC HYPERNOVA SN 2002AP

Paolo A. Mazzali; J. S. Deng; Keiichi Maeda; K. Nomoto; Hideyuki Umeda; Kazuhito Hatano; Koichi Iwamoto; Yuzuru Yoshii; Yukiyasu Kobayashi; Takeo Minezaki; Mamoru Doi; Keigo Enya; Hiroyuki Tomita; Stephen J. Smartt; Kenzo Kinugasa; Hideyo Kawakita; Kazuya Ayani; Takahiro Kawabata; Hitoshi Yamaoka; Y.-L. Qiu; Kentaro Motohara; Christopher Lowell Gerardy; Robert A. Fesen; Koji S. Kawabata; Masanori Iye; Nobunari Kashikawa; George Kosugi; Yoichi Ohyama; Masahide Takada-Hidai; Gang Zhao

Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hypernova SN 1997ef. However, its kinetic energy [~(4-10) ? 1051 ergs] and the mass ejected (2.5-5 M?) are smaller, resulting in a faster evolving light curve. The SN synthesized ~0.07 M? of 56Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 M?, which is also lower than that of both hypernovae SN 1997ef and SN 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by the summer of 2002, are necessary to confirm these values.


The Astrophysical Journal | 2002

Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by

P. Höflich; Christopher Lowell Gerardy; Robert A. Fesen; Shoko Sakai

Near-infrared (NIR) spectra of the subluminous Type Ia supernova SN 1999by are presented that cover the time evolution from about 4 days before to 2 weeks after maximum light. Analysis of these data was accomplished through the construction of an extended set of delayed detonation (DD) models covering the entire range of normal to subluminous SNe Ia. The explosion, light curves, and time evolution of the synthetic spectra were calculated self-consistently for each model, with the only free parameters being the initial structure of the white dwarf and the description of the nuclear burning front during the explosion. From these, one model was selected for SN 1999by by matching the synthetic and observed optical light curves, principally the rapid brightness decline. DD models require a minimum amount of burning during the deflagration phase, which implies a lower limit for the 56Ni mass of about 0.1 M☉ and consequently a lower limit for the SN brightness. The models that best match the optical light curve of SN 1999by were those with a 56Ni production close to this theoretical minimum. The data are consistent with little or no interstellar reddening [E(B-V) ≤ 0.12 mag], and we derive a distance of 11 ± 2.5 Mpc for SN 1999by, in agreement with other estimates. Without any modification, the synthetic spectra from this subluminous model match reasonably well the observed IR spectra taken on 1999 May 6, 10, 16, and 24. These dates correspond roughly to -4, 0, 6, and 14 days after maximum light. Prior to maximum, the NIR spectra of SN 1999by are dominated by products of explosive carbon burning (O, Mg) and Si. Spectra taken after maximum light are dominated by products of incomplete Si burning. Unlike the behavior of normal Type Ia SNe, lines from iron-group elements begin to show up only in our last spectrum taken about 2 weeks after maximum light. The implied distribution of elements in velocity space agrees well with the DD model predictions for a subluminous SN Ia. Regardless of the explosion model, the long duration of the phases dominated by layers of explosive carbon and oxygen burning argues that SN 1999by was the explosion of a white dwarf at or near the Chandrasekhar mass. The good agreement between the observations and the models without fine-tuning a large number of free parameters suggests that DD models are a good description of at least subluminous Type Ia SNe. Pure deflagration scenarios or mergers are unlikely, and helium-triggered explosions can be ruled out. However, problems for DD models still remain, since the data seem to be at odds with recent three-dimensional models of the deflagration phase that predict significant mixing of the inner layers of the white dwarf prior to detonation. Possible solutions include the effects of rapid rotation on the propagation of nuclear flames during the explosive phase of burning or extensive burning of carbon just prior to the runaway.


The Astrophysical Journal | 2007

A Spitzer Space Telescope study of SN 2003gd: Still no direct evidence that core-collapse supernovae are major dust factories

W. P. S. Meikle; Seppo Mattila; Andrea Pastorello; Christopher Lowell Gerardy; R. Kotak; Jesper Sollerman; S. D. van Dyk; D. Farrah; A. V. Filippenko; P. Höflich; Peter Lundqvist; Monica Pozzo; J. C. Wheeler

We present a new, detailed analysis of late-time mid-infrared observations of the Type II-P supernova (SN) 2003gd. At about 16 months after the explosion, the mid-IR flux is consistent with emission from 4 x 10^(-5) M☉ of newly condensed dust in the ejecta. At 22 months emission from pointlike sources close to the SN position was detected at 8 and 24 μm. By 42 months the 24 μm flux had faded. Considerations of luminosity and source size rule out the ejecta of SN 2003gd as the main origin of the emission at 22 months. A possible alternative explanation for the emission at this later epoch is an IR echo from preexisting circumstellar or interstellar dust. We conclude that, contrary to the claim of Sugerman and coworkers, the mid-IR emission from SN 2003gd does not support the presence of 0.02 M☉ of newly formed dust in the ejecta. There is, as yet, no direct evidence that core-collapse supernovae are major dust factories.


The Astrophysical Journal | 2004

SN 2003du: Signatures of the circumstellar environment in a normal type Ia supernova?

Christopher Lowell Gerardy; P. Höflich; Robert A. Fesen; G. H. Marion; K. Nomoto; Robert Michael Quimby; Bradley E. Schaefer; Lifan Wang; J. Craig Wheeler

We present observations of the Type Ia supernova 2003du obtained with the Hobby-Eberly Telescope and report the detection of a high-velocity component in the Ca II infrared triplet near 8000 A, similar to features previously observed in SN 2000cx and SN 2001el. This feature exhibits a large expansion velocity (≈18,000 km s-1), which is nearly constant between -7 and +2 days relative to maximum light and disappears shortly thereafter. Other than this feature, the spectral evolution and light curve of SN 2003du resemble those of a normal SN Ia. We consider a possible origin for this high-velocity Ca II line in the context of a self-consistent spherical delayed-detonation model for the supernova. We find that the Ca II feature can be caused by a dense shell formed when circumstellar material of solar abundance is overrun by the rapidly expanding outermost layers of the SN ejecta. Model calculations show that the optical and infrared spectra are remarkably unaffected by the circumstellar interaction and the resulting shell. In particular, no hydrogen lines are detectable in either absorption or emission after the phase of dynamic interaction. The only qualitatively different features in the model spectra are the strong, high-velocity feature in the Ca II IR triplet around 8000 A and a somewhat weaker O I feature near 7,300 A. The Doppler shift and time evolution of these features provides an estimate for the amount of accumulated matter (decreasing Doppler shift with increasing shell mass) and also an indication of the mixing within the dense shell. For high shell masses (≈5 × 10-2 M☉), the high-velocity component of the Ca II line merges with the photospheric line forming a broad feature. A cutoff of the blue wings of strong, unblended lines (particularly the Si II feature at about 6,000 A) may also be observable for larger shell masses. The model SN Ia light curves are little effected except at very early times when the shell is partially optically thick because of Thomson scattering, resulting in larger (B-V) colors by up to 0.3 mag. We apply these diagnostic tools to SN 2003du and infer that about 2 × 10-2 M☉ of solar abundance material may have accumulated in a shell prior to the observations. Furthermore, in this interpretation, the early light-curve data imply that the circumstellar material was originally very close to the progenitor system, perhaps from an accretion disk, Roche lobe, or common envelope. Because of the observed confinement of Ca II in velocity space and the lack of ongoing interaction inferred from the light curve, the matter cannot be placed in the outer layers of the exploding white dwarf star or related to a recent period of high mass loss in the progenitor system prior to the explosion. We note that the signatures of circumstellar interaction could be rather common in Type Ia supernovae and may have eluded discovery because optical spectra often do not extend significantly beyond 7500 A.


The Astrophysical Journal | 2003

GRB 021004: A Massive Progenitor Star Surrounded by Shells

Bradley E. Schaefer; Christopher Lowell Gerardy; P. Höflich; Alin Panaitescu; Robert Michael Quimby; J. Mader; Gary J. Hill; Pawan Kumar; J. C. Wheeler; M. Eracleous; Steinn Sigurdsson; P. Meszaros; Bing Zhang; Lifan Wang; F. V. Hessman; Vahe Petrosian

We present spectra of the optical transient of GRB021004 obtained with the Hobby-Eberly telescope starting 15.48, 20.31 hours, and 4.84 days after the burst and a spectrum obtained with the H. J. Smith 2.7 m Telescope starting 14.31 hours after the burst. GRB021004 is the first afterglow whose spectrum is dominated by absorption lines from high ionization species with multiple velocity components separated by up to 3000 km/s. We argue that these lines are likely to come from shells around a massive progenitor star. The high velocities and high ionizations arise from a combination of acceleration and flash-ionization by the burst photons and the wind velocity and steady ionization by the progenitor. We also analyze the broad-band spectrum and the light curve. We distinguish six components along the line of sight: (1) The z~2.293 absorption lines arise from the wind of a massive star. For a mass loss rate of ~6 x 10^{-5} solar masses per year, this component also provides the external medium to create the afterglow light. (2) A second shell produces absorption lines with a relative velocity of 560 km/s, and this is associated with the shell created by the fast massive star wind blowing a bubble in the preceding slow wind at a radial distance of order 10 pc. (3) More distant clouds within the host galaxy lie between 30-2500 pc, where they have been ionized by the burst. (4-6) The massive star wind has clumps with radii and over-densities of 0.022, 0.063, and 0.12 parsecs and 50%, 10%, and 10% respectively. The immediate progenitor of the burster could either be a WC-type Wolf-Rayet star or a highly evolved star whose original mass was just too small for it to become a WN-type Wolf-Rayet star.


Monthly Notices of the Royal Astronomical Society | 2008

Massive stars exploding in a He-rich circumstellar medium – III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM

Seppo Mattila; W. P. S. Meikle; Peter Lundqvist; Andrea Pastorello; R. Kotak; J. J. Eldridge; S. J. Smartt; A. Adamson; Christopher Lowell Gerardy; Luigi Rizzi; Andrew W. Stephens; S. D. van Dyk

We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest 3.0 × 10^(−4) M_⊙ by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least ∼8 × 10^(−3) M_⊙. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.


The Astrophysical Journal | 2007

Signatures of delayed detonation, asymmetry, and electron capture in the mid-infrared spectra of supernovae 2003hv and 2005df

Christopher Lowell Gerardy; W. P. S. Meikle; R. Kotak; P. Höflich; D. Farrah; Alexei V. Filippenko; Ryan J. Foley; Peter Lundqvist; Seppo Mattila; Monica Pozzo; Jesper Sollerman; Schuyler D. Van Dyk; J. Craig Wheeler

We present mid-infrared (5.2-15.2 μm) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co III], which matches the blueshift of [Fe II ] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive ^(56)Ni give M^(56)Ni ≈ 0.5 M⊙, for SN 2003hv, but only M^(56)Ni ≈ 0.13-0.22 M⊙ for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive ^(56)Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.


The Astrophysical Journal | 2002

GRB 010222: A Burst Within a Starburst

Dale A. Frail; F. Bertoldi; Gerald H. Moriarty-Schieven; Edo Berger; P. A. Price; J. S. Bloom; Re'em Sari; S. R. Kulkarni; Christopher Lowell Gerardy; Daniel E. Reichart; S. G. Djorgovski; Titus J. Galama; Fiona A. Harrison; Frederich M. Walter; D. S. Shepherd; J. P. Halpern; A. B. Peck; K. M. Menten; Scott A. Yost; D. W. Fox

We present millimeter- and submillimeter-wavelength observations and near-infrared K-band imaging toward the bright gamma-ray burst GRB 010222. Over seven different epochs, a constant source was detected with an average flux density of 3.74 ± 0.53 mJy at 350 GHz and 1.05 ± 0.22 mJy at 250 GHz, giving a spectral index α = 3.78 ± 0.25 (where F ∝ να). We rule out the possibility that this emission originated from the burst or its afterglow, and we conclude that it is due to a dusty, high-redshift starburst galaxy (SMM J14522+4301). We argue that the host galaxy of GRB 010222 is the most plausible counterpart of SMM J14522+4301, based in part on the centimeter detection of the host at the expected level. The optical/near-IR properties of the host galaxy of GRB 010222 suggest that it is a blue sub-L* galaxy, similar to other GRB host galaxies. This contrasts with the enormous far-infrared luminosity of this galaxy based on our submillimeter detection (LBol ≈ 4 × 1012 L☉). We suggest that this GRB host galaxy has a very high star formation rate, SFR ≈ 600 M☉ yr-1, most of which is unseen at optical wavelengths.


The Astronomical Journal | 2000

Detection of CO and Dust Emission in Near-Infrared Spectra of SN 1998S

Christopher Lowell Gerardy; Robert A. Fesen; P. Höflich; J. Craig Wheeler

Near-infrared spectra (0.95?2.4 ?m) of the peculiar Type IIn supernova 1998S in NGC 3877 from 95 to 355 days after maximum light are presented. K-band data taken at days 95 and 225 show the presence of the first overtone of CO emission near 2.3 ?m, which is gone by day 355. An apparent extended blue wing on the CO profile in the day 95 spectrum could indicate a large CO expansion velocity (?2000?3000 km s-1). This is the third detection of infrared CO emission in nearly as many Type II supernovae studied, implying that molecule formation may be fairly common in Type II events and that the early formation of molecules in SN 1987A may be typical rather than exceptional. Multipeak hydrogen and helium lines suggest that SN 1998S is interacting with a circumstellar disk, and the fading of the red side of this profile with time suggests that dust is forming in the ejecta, perhaps induced by CO cooling. Continuum emission that rises toward longer wavelengths (J ? K) is seen after day 225 with an estimated near-infrared luminosity 1040 ergs s-1. This may be related to the near-infrared excesses seen in a number of other supernovae. If this continuum is due to free-free emission, it requires an exceptionally shallow density profile. On the other hand, the shape of the continuum is well fitted by a 1200 ? 150 K blackbody spectrum, possibly due to thermal emission from dust. Interestingly, we observe a similar 1200 K blackbody-like, near-infrared continuum in SN 1997ab, another Type IIn supernova at an even later postmaximum epoch (day 1064+). A number of dust emission scenarios are discussed, and we conclude that the near-infrared dust continuum is likely powered by the interaction of SN 1998S with the circumstellar medium.


The Astrophysical Journal | 2010

Doublets and Double Peaks: Late-Time [O I] λλ6300, 6364 Line Profiles of Stripped-Envelope, Core-Collapse Supernovae

Dan Milisavljevic; Robert A. Fesen; Christopher Lowell Gerardy; Robert P. Kirshner; Peter M. Challis

We present optical spectra of SN 2007gr, SN 2007rz, SN 2007uy, SN 2008ax, and SN 2008bo obtained in the nebular phase when line profiles can lead to information about the velocity distribution of the exploded cores. We compare these to 13 other published spectra of stripped-envelope core-collapse supernovae (Type IIb, Ib, and Ic) to investigate properties of their double-peaked [O I] λλ6300, 6364 emission. These 18 supernovae are divided into two empirical line profile types: (1) profiles showing two conspicuous emission peaks nearly symmetrically centered on either side of 6300 A and spaced ≈64 A apart, close to the wavelength separation between the [O I] λλ6300, 6364 doublet lines, and (2) profiles showing asymmetric [O I] line profiles consisting of a pronounced emission peak near 6300 A plus one or more blueshifted emission peaks. Examination of these emission profiles, as well as comparison with profiles in the lines of [O I] λ5577, O I λ7774, and Mg I] λ4571, leads us to conclude that neither type of [O I] double-peaked profile is necessarily the signature of emission from front and rear faces of ejecta arranged in a toroidal disk or elongated shell geometry as previously suggested. We propose possible alternative interpretations of double-peaked emission for each profile type, test their feasibility with simple line-fitting models, and discuss their strengths and weaknesses. The underlying cause of the observed predominance of blueshifted emission peaks is unclear, but may be due to internal scattering or dust obscuration of emission from far side ejecta.

Collaboration


Dive into the Christopher Lowell Gerardy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Höflich

Florida State University

View shared research outputs
Top Co-Authors

Avatar

J. Craig Wheeler

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kotak

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. H. Marion

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Pozzo

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge