Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Lyu is active.

Publication


Featured researches published by Christopher Lyu.


Journal of Exposure Science and Environmental Epidemiology | 2003

Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home

Nancy K. Wilson; Jane C Chuang; Christopher Lyu; Ronald G. Menton; Marsha K. Morgan

In the summer of 1997, we measured the aggregate exposures of nine preschool children, aged 2–5 years, to a suite of organic pesticides and other persistent organic pollutants that are commonly found in the home and school environment. The children attended either of two child day care centers in the Raleigh–Durham–Chapel Hill area of North Carolina and were in day care at least 25 h/week. Over a 48-h period, we sampled indoor and outdoor air, play area soil and floor dust, as well as duplicate diets, hand surface wipes, and urine for each child at day care and at home. Our target analytes were several polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides, and polychlorinated biphenyls (PCB); two organophosphate pesticides (chlorpyrifos and diazinon), the lawn herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), three phenols (pentachlorophenol (PCP), nonyl phenols, and bisphenol-A), 3,5,6-trichloro-2-pyridinol (TCP), and two phthalate esters (benzylbutyl and dibutyl phthalate). In urine, our target analytes were hydroxy-PAH, TCP, 2,4-D, and PCP. To allow estimation of each childs aggregate exposures over the 48-h sampling period, we also used time–activity diaries, which were filled out by each childs teacher at day care and the parent or other primary caregiver at home. In addition, we collected detailed household information that related to potential sources of exposure, such as pesticide use or smoking habits, through questionnaires and field observation. We found that the indoor exposures were greater than those outdoors, that exposures at day care and at home were of similar magnitudes, and that diet contributed greatly to the exposures. The childrens potential aggregate doses, calculated from our data, were generally well below established reference doses (RfDs) for those compounds for which RfDs are available.


Environmental Health Perspectives | 2009

Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia.

Scott M. Bartell; Antonia M. Calafat; Christopher Lyu; Kayoko Kato; P. Barry Ryan; Kyle Steenland

Background Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007. Objectives To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration. Methods Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May–June 2007. Results For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May–June 2007 and May–August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November–December 2007 and May–June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 25–28% per year). Conclusions The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation.


Journal of Exposure Science and Environmental Epidemiology | 2005

Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments

Marsha K. Morgan; Linda Sheldon; Carry Croghan; Paul A. Jones; Gary L Robertson; Jane C Chuang; Nancy K. Wilson; Christopher Lyu

As part of the Childrens Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) study, we investigated the exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol (TCP) in their everyday environments. During this study, the participants were still able to purchase and apply chlorpyrifos at their homes or day care centers. Participants were recruited randomly from 129 homes and 13 day care centers in six North Carolina counties. Monitoring was performed over a 48-h period at the childrens homes and/or day care centers. Samples that were collected included duplicate plate, indoor and outdoor air, urine, indoor floor dust, play area soil, transferable residues (PUF roller), and surface wipes (hand, food preparation, and hard floor). The samples were extracted and analyzed by gas chromatography/mass spectrometry. Chlorpyrifos was detected in 100% of the indoor air and indoor floor dust samples from homes and day care centers. TCP was detected at homes and day care centers in 100% of the indoor floor dust and hard floor surface wipe, in >97% of the solid food, and in >95% of the indoor air samples. Generally, median levels of chlorpyrifos were higher than those of TCP in all media, except for solid food samples. For these samples, the median TCP concentrations were 12 and 29 times higher than the chlorpyrifos concentrations at homes and day care centers, respectively. The median urinary TCP concentration for the preschool children was 5.3 ng/ml and the maximum value was 104 ng/ml. The median potential aggregate absorbed dose (ng/kg/day) of chlorpyrifos for these preschool children was estimated to be 3 ng/kg/day. The primary route of exposure to chlorpyrifos was through dietary intake, followed by inhalation. The median potential aggregate absorbed dose of TCP for these children was estimated to be 38 ng/kg/day, and dietary intake was the primary route of exposure. The median excreted amount of urinary TCP for these children was estimated to be 117 ng/kg/day. A full regression model of the relationships among chlorpyrifos and TCP for the children in the home group explained 23% of the variability of the urinary TCP concentrations by the three routes of exposure (inhalation, ingestion, dermal absorption) to chlorpyrifos and TCP. However, a final reduced model via step-wise regression retained only chlorpyrifos through the inhalation route and explained 22% of the variability of TCP in the childrens urine. The estimated potential aggregate absorbed doses of chlorpyrifos through the inhalation route were low (median value, 0.8 ng/kg/day) and could not explain most of the excreted amounts of urinary TCP. This suggested that there were other possible sources and pathways of exposure that contributed to the estimated potential aggregate absorbed doses of these children to chlorpyrifos and TCP. One possible pathway of exposure that was not accounted for fully is through the childrens potential contacts with contaminated surfaces at homes and day care centers. In addition, other pesticides such as chlorpyrifos-methyl may have also contributed to the levels of TCP in the urine. Future studies should include additional surface measurements in their estimation of potential absorbed doses of preschool children to environmental pollutants. In conclusion, the results showed that the preschool children were exposed to chlorpyrifos and TCP from several sources, through several pathways and routes.


Journal of the National Cancer Institute | 2015

US Assessment of HPV Types in Cancers: Implications for Current and 9-Valent HPV Vaccines

Mona Saraiya; Elizabeth R. Unger; Trevor D. Thompson; Charles F. Lynch; Brenda Y. Hernandez; Christopher Lyu; Martin Steinau; Meg Watson; Edward J. Wilkinson; Claudia Hopenhayn; Glenn Copeland; Wendy Cozen; Edward S. Peters; Youjie Huang; Maria Sibug Saber; Sean F. Altekruse; Marc T. Goodman

BACKGROUND This study sought to determine the prevaccine type-specific prevalence of human papillomavirus (HPV)-associated cancers in the United States to evaluate the potential impact of the HPV types in the current and newly approved 9-valent HPV vaccines. METHODS The Centers for Disease Control and Prevention partnered with seven US population-based cancer registries to obtain archival tissue for cancers diagnosed from 1993 to 2005. HPV testing was performed on 2670 case patients that were fairly representative of all participating cancer registry cases by age and sex. Demographic and clinical data were evaluated by anatomic site and HPV status. Current US cancer registry data and the detection of HPV types were used to estimate the number of cancers potentially preventable through vaccination. RESULTS HPV DNA was detected in 90.6% of cervical, 91.1% of anal, 75.0% of vaginal, 70.1% of oropharyngeal, 68.8% of vulvar, 63.3% of penile, 32.0% of oral cavity, and 20.9% of laryngeal cancers, as well as in 98.8% of cervical cancer in situ (CCIS). A vaccine targeting HPV 16/18 potentially prevents the majority of invasive cervical (66.2%), anal (79.4%), oropharyngeal (60.2%), and vaginal (55.1%) cancers, as well as many penile (47.9%), vulvar (48.6%) cancers: 24 858 cases annually. The 9-valent vaccine also targeting HPV 31/33/45/52/58 may prevent an additional 4.2% to 18.3% of cancers: 3944 cases annually. For most cancers, younger age at diagnosis was associated with higher HPV 16/18 prevalence. With the exception of oropharyngeal cancers and CCIS, HPV 16/18 prevalence was similar across racial/ethnic groups. CONCLUSIONS In the United States, current vaccines will reduce most HPV-associated cancers; a smaller additional reduction would be contributed by the new 9-valent vaccine.


Journal of Exposure Science and Environmental Epidemiology | 2001

Levels of persistent organic pollutants in several child day care centers.

Nancy K. Wilson; Jane C Chuang; Christopher Lyu

The concentrations of a suite of persistent organic chemicals were measured in multiple media in 10 child day care centers located in central North Carolina. Five centers served mainly children from low-income families, as defined by the federal Women, Infants, and Children (WIC) assistance program, and five served mainly children from middle-income families. The targeted chemicals were chosen because of their probable carcinogenicity, acute or chronic toxicity, or hypothesized potential for endocrine system disruption. Targeted compounds included polycyclic aromatic hydrocarbons (PAHs), pentachloro- and nonyl-phenol, bisphenol-A, dibutyl and butylbenzyl phthalate, polychlorinated biphenyls (PCBs), organochlorine pesticides, the organophosphate pesticides diazinon and chlorpyrifos, and the herbicide 2,4-dichlorophenoxyacetic acid (2,4D). Sampled media were indoor and outdoor air, food and beverages, indoor dust, and outdoor play area soil. Concentrations of the targeted compounds were determined using a combination of extraction and analysis methods, depending on the media. Analysis was predominantly by gas chromatography/mass spectrometry (GC/MS) or gas chromatography with electron capture detection (GC/ECD). Concentrations of the targeted pollutants were low and well below the levels generally considered to be of concern as possible health hazards. Potential exposures to the target compounds were estimated from the concentrations in the various media, the childrens daily time–activity schedules at day care, and the best currently available estimates of the inhalation rates (8.3 m3/day) and soil ingestion rates (100 mg/day) of children ages 3–5. The potential exposures for the target compounds differed depending on the compound class and the sampled media. Potential exposures through dietary ingestion were greater than those through inhalation, which were greater than those through nondietary ingestion, for the total of all PAHs, the phenols, the organophosphate pesticides, and the organochlorine pesticides. Potential exposures through dietary ingestion were greater than those through nondietary ingestion, which were greater than those through inhalation, for those PAHs that are probable human carcinogens (B2 PAH), the phthalate esters, and 2,4D. For the PCBs, exposures through inhalation were greater than those through nondietary ingestion, and exposures through dietary ingestion were smallest. Differences in targeted compound levels between the centers that serve mainly low-income clients and those that serve mainly middle-income clients were small and depended on the compound class and the medium.


Environmental Health Perspectives | 2005

Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes

John R. Nuckols; David L. Ashley; Christopher Lyu; Sydney M. Gordon; Alison Hinckley; Philip C. Singer

Individual exposure to trihalomethanes (THMs) in tap water can occur through ingestion, inhalation, or dermal exposure. Studies indicate that activities associated with inhaled or dermal exposure routes result in a greater increase in blood THM concentration than does ingestion. We measured blood and exhaled air concentrations of THM as biomarkers of exposure to participants conducting 14 common household water use activities, including ingestion of hot and cold tap water beverages, showering, clothes washing, hand washing, bathing, dish washing, and indirect shower exposure. We conducted our study at a single residence in each of two water utility service areas, one with relatively high and the other low total THM in the residence tap water. To maintain a consistent exposure environment for seven participants, we controlled water use activities, exposure time, air exchange, water flow and temperature, and nonstudy THM sources to the indoor air. We collected reference samples for water supply and air (pre–water use activity), as well as tap water and ambient air samples. We collected blood samples before and after each activity and exhaled breath samples at baseline and postactivity. All hot water use activities yielded a 2-fold increase in blood or breath THM concentrations for at least one individual. The greatest observed increase in blood and exhaled breath THM concentration in any participant was due to showering (direct and indirect), bathing, and hand dishwashing. Average increase in blood THM concentration ranged from 57 to 358 pg/mL due to these activities. More research is needed to determine whether acute and frequent exposures to THM at these concentrations have public health implications. Further research is also needed in designing epidemiologic studies that minimize data collection burden yet maximize accuracy in classification of dermal and inhalation THM exposure during hot water use activities.


Journal of Exposure Science and Environmental Epidemiology | 2004

Design and sampling methodology for a large study of preschool children's aggregate exposures to persistent organic pollutants in their everyday environments.

Nancy K. Wilson; Jane C Chuang; Ronaldo Iachan; Christopher Lyu; Sydney M. Gordon; Marsha K. Morgan; Halûk Özkaynak; Linda Sheldon

Young children, because of their immaturity and their rapid development compared to adults, are considered to be more susceptible to the health effects of environmental pollutants. They are also more likely to be exposed to these pollutants, because of their continual exploration of their environments with all their senses. Although there has been increased emphasis in recent years on exposure research aimed at this specific susceptible population, there are still large gaps in the available data, especially in the area of chronic, low-level exposures of children in their home and school environments. A research program on preschool childrens exposures was established in 1996 at the USEPA National Exposure Research Laboratory. The emphasis of this program is on childrens aggregate exposures to common contaminants in their everyday environments, from multiple media, through all routes of exposure. The current research project, “Childrens Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants,” (CTEPP), is a pilot-scale study of the exposures of 257 children, ages 1½–5 years, and their primary adult caregivers to contaminants in their everyday surroundings. The contaminants of interest include several pesticides, phenols, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and phthalate esters. Field recruitment and data collection began in February 2000 in North Carolina and were completed in November 2001 in Ohio. This paper describes the design strategy, survey sampling, recruiting, and field methods for the CTEPP study.


Emerging Infectious Diseases | 2014

Human Papillomavirus Prevalence in Oropharyngeal Cancer before Vaccine Introduction, United States

Martin Steinau; Mona Saraiya; Marc T. Goodman; Edward S. Peters; Meg Watson; Jennifer L. Cleveland; Charles F. Lynch; Edward J. Wilkinson; Brenda Y. Hernandez; Glen Copeland; Maria Sibug Saber; Claudia Hopenhayn; Youjie Huang; Wendy Cozen; Christopher Lyu; Elizabeth R. Unger

We conducted a study to determine prevalence of HPV types in oropharyngeal cancers in the United States and establish a prevaccine baseline for monitoring the impact of vaccination. HPV DNA was extracted from tumor tissue samples from patients in whom cancer was diagnosed during 1995–2005. The samples were obtained from cancer registries and Residual Tissue Repository Program sites in the United States. HPV was detected and typed by using PCR reverse line blot assays. Among 557 invasive oropharyngeal squamous cell carcinomas, 72% were positive for HPV and 62% for vaccine types HPV16 or 18. Prevalence of HPV-16/18 was lower in women (53%) than in men (66%), and lower in non-Hispanic Black patients (31%) than in other racial/ethnic groups (68%–80%). Results indicate that vaccines could prevent most oropharyngeal cancers in the United States, but their effect may vary by demographic variables.


Environmental Health Perspectives | 2005

Changes in breath trihalomethane levels resulting from household water-use activities

Sydney M. Gordon; Marielle C. Brinkman; David L. Ashley; Benjamin C. Blount; Christopher Lyu; John R. W. Masters; Philip C. Singer

Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure.


Journal of Lower Genital Tract Disease | 2012

Prevalence of human papillomavirus types in invasive vulvar cancers and vulvar intraepithelial neoplasia 3 in the United States before vaccine introduction.

Julia W. Gargano; Edward J. Wilkinson; Elizabeth R. Unger; Martin Steinau; Meg Watson; Youjie Huang; Glenn Copeland; Wendy Cozen; Marc T. Goodman; Claudia Hopenhayn; Charles F. Lynch; Brenda Y. Hernandez; Edward S. Peters; Maria Sibug Saber; Christopher Lyu; Lauren A. Sands; Mona Saraiya

Objective The study aimed to determine the baseline prevalence of human papillomavirus (HPV) types in invasive vulvar cancer (IVC) and vulvar intraepithelial neoplasia 3 (VIN 3) cases using data from 7 US cancer registries. Materials and Methods Registries identified eligible cases diagnosed in 1994 to 2005 and requested pathology laboratories to prepare 1 representative block for HPV testing on those selected. Hematoxylin-eosin–stained sections preceding and following those used for extraction were reviewed to confirm representation. Human papillomavirus was detected using L1 consensus polymerase chain reaction (PCR) with PGMY9/11 primers and type-specific hybridization, with retesting of samples with negative and inadequate results with SPF10 primers. For IVC, the confirmatory hematoxylin-eosin slides were re-evaluated to determine histological type. Descriptive analyses were performed to examine distributions of HPV by histology and other factors. Results Human papillomavirus was detected in 121/176 (68.8%) cases of IVC and 66/68 (97.1%) cases of VIN 3 (p < .0001). Patients with IVC and VIN 3 differed by median age (70 vs 55 y, p = .003). Human papillomavirus 16 was present in 48.6% of IVC cases and 80.9% of VIN 3 cases; other high-risk HPV was present in 19.2% of IVC cases and 13.2% of VIN 3 cases. Prevalence of HPV differed by squamous cell carcinoma histological subtype (p < .0001) as follows: keratinizing, 49.1% (n = 55); nonkeratinizing, 85.7% (n = 14), basaloid, 92.3% (n = 14), warty 78.2% (n = 55), and mixed warty/basaloid, 100% (n = 7). Conclusions Nearly all cases of VIN 3 and two thirds of IVC cases were positive for high-risk HPV. Prevalence of HPV ranged from 49.1% to 100% across squamous cell carcinoma histological subtypes. Given the high prevalence of HPV in IVC and VIN 3 cases, prophylactic vaccines have the potential to decrease the incidence of vulvar neoplasia.

Collaboration


Dive into the Christopher Lyu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth R. Unger

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Marc T. Goodman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martin Steinau

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Mona Saraiya

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Sibug Saber

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Wendy Cozen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Glenn Copeland

Michigan Department of Community Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge