Christopher M. Dekaney
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher M. Dekaney.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2009
Aaron P. Garrison; Christopher M. Dekaney; Douglas C. von Allmen; P. Kay Lund; Susan J. Henning; Michael A. Helmrath
Expansion of intestinal progenitors and putative stem cells (pISC) occurs early and transiently following ileo-cecal resection (ICR). The mechanism controlling this process is not defined. We hypothesized that glucagon-like peptide-2 (GLP-2) would augment jejunal pISC expansion only when administered to mice immediately after ICR. Since recent reports demonstrated increases in intestinal insulin-like growth factor (IGF)-I following GLP-2 administration, we further hypothesized that increased intestinal IGF-I expression would correlate with pISC expansion following ICR. To assess this, GLP-2 or vehicle was administered to mice either immediately after resection (early) or before tissue harvest 6 wk following ICR (late). Histological analysis quantified proliferation and intestinal morphometrics. Serum levels of GLP-2 were measured by ELISA and jejunal IGF-I mRNA by qRT-PCR. Expansion of jejunal pISC was assessed by fluorescent-activated cell sorting of side population cells, immunohistochemistry for phosphorylated beta-catenin at serine 552 (a pISC marker), percent of crypt fission, and total numbers of crypts per jejunal circumference. We found that early but not late GLP-2 treatment after ICR significantly augmented pISC expansion. Increases in jejunal IGF-I mRNA correlated temporally with early pISC expansion and effects of GLP-2. Early GLP-2 increased crypt fission and accelerated adaptive increases in crypt number and intestinal caliber. GLP-2 increased proliferation and intestinal morphometrics in all groups. This study shows that, in mice, GLP-2 promotes jejunal pISC expansion only in the period immediately following ICR. This is associated with increased IGF-I and accelerated adaptive increases in mucosal mass. These data provide clinical rationale relevant to the optimal timing of GLP-2 in patients with intestinal failure.
PLOS ONE | 2011
Jeffrey J. Dehmer; Aaron P. Garrison; Karen E. Speck; Christopher M. Dekaney; Laurianne Van Landeghem; Xiaofei Sun; Susan J. Henning; Michael A. Helmrath
Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points.
Journal of Pediatric Gastroenterology and Nutrition | 2009
Aaron P. Garrison; Michael A. Helmrath; Christopher M. Dekaney
The epithelial cell lining of the gastrointestinal tract is the most rapidly proliferating tissue in the body. The constant state of renewal of differentiated epithelial cells is sustained by a continual supply of progeny from multipotent progenitors that originate from stem cells located within the intestinal crypts. In addition to supporting normal epithelial homeostasis, intestinal stem cells (ISC) are thought to play an important role in the rapid expansion of the gut during development, tissue regeneration following injury or surgical loss, and malignancy. Because of the lack of specific ISC markers required to isolate and characterize these cells, our current knowledge of the biology of ISC results largely from indirect measures of their behavior published during the past 40 years. The recent description of several potential ISC markers and the use of transgenic mice, both as a tool to lineage trace and to isolate specific cells expressing these markers, have provided a tremendous advancement to our current understanding of these cells. This brief review provides a general historical overview of our understanding of ISC and the tools available to study their behavior in the context of normal and pathological conditions, as well as potential future clinical applications that may result from this exciting area of research.
Surgery | 2008
Christopher M. Dekaney; Douglas C. von Allmen; Aaron P. Garrison; Rachael Rigby; P. Kay Lund; Susan J. Henning; Michael A. Helmrath
BACKGROUND Bile acid (BA) reclamation following ileo-cecal resection (ICR) may prevent colonic mucosa from chronic injury. In this study, we hypothesized that in a murine model of ICR the remnant colon would upregulate the cellular machinery necessary for BA reclamation and would do so in an FXR- and bacteria-dependent manner. METHODS Conventional (WT), conventional FXR knockout (FXR null) and germ-free (GF) mice were randomized to undergo either ICR or sham operation. The ascending colon was harvested for histology and immunohistochemistry and changes in bile acid homeostatic gene expression determined by real-time polymerase chain reaction (RT-PCR) 7 days following surgery. RESULTS Following ICR WT mice showed significant increases in the expression of genes regulating bile acid transport including IBABP, Asbt, Ost beta and FGF 15. Increased expression of IBABP and Asbt was confirmed by immunohistochemistry. Induction of bile acid transport genes was absent or attenuated in FXR null and GF mice. CONCLUSION Bacterial dependent up regulation of IBABP is FXR mediated in the colon following ICR. Mice lacking microbiota (GF) or FXR are unable to increase the expression of IBABP or FGF 15.
Current Opinion in Gastroenterology | 2013
Stephanie L. King; Christopher M. Dekaney
Purpose of reviewTo summarize our current understanding of small intestinal stem cell biology and the current tools available for studying intestinal stem cells (ISCs). Recent findingsRecent reviews and original reports point toward the presence of two distinct populations of stem cells (ISCs) within the intestinal crypts. Until recently, the study of these two populations has been hindered by the lack of biomarkers available for isolation and characterization of ISCs and the absence of suitable culture conditions for expansion of ISCs in vitro. With the accumulation of various surface markers and transgenic mouse models, we have been able to gain a better understanding of the genetic signature of ISCs. In addition, these tools have provided opportunities to begin to study how ISCs are influenced by the various components of the ISC niche, including fibroblasts, bacteria, lymphoid cells, and Paneth cells. Advances in culture conditions now allow for the establishment of in-vitro studies of ISC function and dynamics. SummaryThis brief review provides a general historical perspective of our understanding of the delineation of the two ISC populations. Furthermore, it discusses the known ISC markers and how these markers have been used to isolate and characterize ISC populations.
Gut microbes | 2016
Rachael Rigby; Jacquelyn Carr; Kelly Orgel; Stephanie L. King; P. Kay Lund; Christopher M. Dekaney
ABSTRACT Doxorubicin (DOXO) induces significant, but transient, increases in apoptosis in the stem cell zone of the jejunum, followed by mucosal damage involving a decrease in crypt proliferation, crypt number, and villus height. The gastrointestinal tract is home to a vast population of commensal bacteria and numerous studies have demonstrated a symbiotic relationship between intestinal bacteria and intestinal epithelial cells (IEC) in maintaining homeostatic functions of the intestine. However, whether enteric bacteria play a role in DOXO-induced damage is not well understood. We hypothesized that enteric bacteria are necessary for induction of apoptosis and damage associated with DOXO treatment. Conventionally raised (CONV) and germ free (GF) mice were given a single injection of DOXO, and intestinal tissue was collected at 6, 72, and 120 h after treatment and from no treatment (0 h) controls. Histology and morphometric analyses quantified apoptosis, mitosis, crypt depth, villus height, and crypt density. Immunostaining for muc2 and lysozyme evaluated Paneth cells, goblet cells or dual stained intermediate cells. DOXO administration induced significant increases in apoptosis in jejunal epithelium regardless of the presence of enteric bacteria; however, the resulting injury, as demonstrated by statistically significant changes in crypt depth, crypt number, and proliferative cell number, was dependent upon the presence of enteric bacteria. Furthermore, we observed expansion of Paneth and goblet cells and presence of intermediate cells only in CONV and not GF mice. These findings provide evidence that manipulation and/or depletion of the enteric microbiota may have clinical significance in limiting chemotherapy-induced mucositis.
PLOS ONE | 2017
Jacquelyn Carr; Stephanie L. King; Christopher M. Dekaney
Background & aims While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. Methods Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. Results In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. Conclusion Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.
Gastroenterology | 2005
Christopher M. Dekaney; Jose M. Mateos Rodriguez; M. Colleen Graul; Susan J. Henning
American Journal of Physiology-gastrointestinal and Liver Physiology | 2007
Christopher M. Dekaney; Jerry J. Fong; Rachael Rigby; P. Kay Lund; Susan J. Henning; Michael A. Helmrath
American Journal of Physiology-gastrointestinal and Liver Physiology | 2009
Christopher M. Dekaney; Ajay S. Gulati; Aaron P. Garrison; Michael A. Helmrath; Susan J. Henning