Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher M. Hovens is active.

Publication


Featured researches published by Christopher M. Hovens.


Nature Genetics | 2000

Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk

Michael M. Halford; Jane E. Armes; Michael Buchert; Virginia Meskenaite; Dianne Grail; Margaret L. Hibbs; Andrew F. Wilks; Peter G. Farlie; Donald F. Newgreen; Christopher M. Hovens; Steven A. Stacker

Secondary palate formation is a complex process that is frequently disturbed in mammals, resulting in the birth defect cleft palate. Gene targeting has identified components of cytokine/growth factor signalling systems such as Tgf-α/Egfr, Eph receptors B2 and B3 (Ephb2 and Ephb3, respectively), Tgf-β2, Tgf-β3 and activin-βA (ref. 3) as regulators of secondary palate development. Here we demonstrate that the mouse orphan receptor ‘related to tyrosine kinases’ (Ryk) is essential for normal development and morphogenesis of craniofacial structures including the secondary palate. Ryk belongs to a subclass of catalytically inactive, but otherwise distantly related, receptor protein tyrosine kinases (RTKs). Mice homozygous for a null allele of Ryk have a distinctive craniofacial appearance, shortened limbs and postnatal mortality due to feeding and respiratory complications associated with a complete cleft of the secondary palate. Consistent with cleft palate phenocopy in Ephb2/Ephb3-deficient mice and the role of a Drosophila melanogaster Ryk orthologue, Derailed, in the transduction of repulsive axon pathfinding cues, our biochemical data implicate Ryk in signalling mediated by Eph receptors and the cell-junction–associated Af-6 (also known as Afadin). Our findings highlight the importance of signal crosstalk between members of different RTK subfamilies.


Nature Communications | 2015

Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer

Matthew K.H. Hong; Geoff Macintyre; David C. Wedge; Peter Van Loo; Keval Patel; Sebastian Lunke; Ludmil B. Alexandrov; Clare Sloggett; Marek Cmero; Francesco Marass; Dana Tsui; Stefano Mangiola; Andrew Lonie; Haroon Naeem; Nikhil Sapre; Natalie Kurganovs; Xiaowen Chin; Michael Kerger; Anne Warren; David E. Neal; Vincent Gnanapragasam; Nitzan Rosenfeld; John Pedersen; Andrew Ryan; Izhak Haviv; Anthony J. Costello; Niall M. Corcoran; Christopher M. Hovens

Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.


Nature Biotechnology | 1999

Mutagenesis and selection of PDZ domains that bind new protein targets

Stefan Schneider; Michael Buchert; Oleg Georgiev; Bruno Catimel; Michael M. Halford; Steven A. Stacker; Thomas Baechi; Karin Moelling; Christopher M. Hovens

PDZ domains are a recently characterized protein–recognition module. In most cases, PDZ domains bind to the C–terminal end of target proteins and are thought thereby to link these target proteins into functional signaling networks. We report the isolation of artificial PDZ domains selected via a mutagenesis screen in vivo, each recognizing a different C–terminal peptide. We demonstrate that the PDZ domains isolated can bind selectively to their target peptides in vitro and in vivo. Two of the target peptides chosen are the C–terminal ends of two cellular transmembrane proteins with which no known PDZ domains have been reported to interact. By targeting these artificial PDZ domains to the nucleus, interacting target peptides were efficiently transported to the same subcellular localization. One of the isolated PDZ domains was tested and shown to be efficiently directed to the plasma membrane when cotransfected with the full–length transmembrane protein in mammalian cells. Thus, artificial PDZ domains can be engineered and used to target intracellular proteins to different subcellular compartments.


Gene | 1989

The application of the polymerase chain reaction to cloning members of the protein tyrosine kinase family

Andrew F. Wilks; Raja R. Kurban; Christopher M. Hovens; Stephen J. Ralph

Degenerate oligodeoxyribonucleotide (oligo) primers derived from amino acid (aa) sequence motifs held in common between all members of the protein tyrosine kinase (PTK) family were used to prime the amplification of PTK-related sequences from a variety of murine cDNA sources, including the haemopoietic cell lines, FDC-P1 and WEHI-3B D+, peritoneal macrophages and whole brain. Several parameters, such as the length (short, i.e., less than 20 nucleotides (nt) vs. long, i.e., greater than 30 nt) and degeneracy (i.e., moderately degenerate vs. highly degenerate) of the oligo primers and the temperature of the extension phase of the reaction, were examined. The data from these analyses suggest that the most effective type of primer in this application of the polymerase chain reaction is a short, moderately degenerate oligo such as that which might be derived from the small patches of aa sequence homology that are frequently found to be held in common among members of protein families. In addition to a number of previously described PTK sequences, a novel mammalian PTK-related sequence was uncovered.


Journal of Clinical Neuroscience | 2007

Targeting malignant glioma survival signalling to improve clinical outcomes

Michael L.H. Wong; Andrew H. Kaye; Christopher M. Hovens

Malignant gliomas are common and aggressive brain tumours in adults. Current treatments for glioblastoma multiforme result in a poor median survival of less than 12 months. The blood-brain barrier restricts the delivery of many chemotherapies to the central nervous system, contributing to the failure of treatment. PI3K/Akt and Ras/MAPK pathways have been identified as important oncogenic pathways in these tumours. The PI3K/Akt pathway mediates cell survival and growth, whereas the Ras/MAPK pathway signals cell differentiation, proliferation and anti-apoptosis. Modern targeted therapies include antibodies to circulating growth factors and cell surface receptors, as well as inhibitors of receptor tyrosine kinases and specific intracellular signalling proteins. Monotherapy with most targeted therapies produces only modest efficacy. Better results are achieved in combination with cytotoxic chemotherapies. Future therapeutics should focus on combination therapy with small lipophilic molecules.


Journal of Clinical Neuroscience | 2010

Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer's disease model.

Niall M. Corcoran; Daniel Martin; Birgit Hutter-Paier; Manfred Windisch; Thanh T. Nguyen; Lina Nheu; Lars E. Sundstrom; Anthony J. Costello; Christopher M. Hovens

Neurofibrillary tangles composed of abnormally hyperphosphorylated tau protein are a hallmark of Alzheimers disease (AD) and related tauopathies. Tau hyperphosphorylation is thought to promote aggregation with subsequent tangle formation. Reducing tau phosphorylation by boosting the activity of the key phosphatase/s that mediate dephosphorylation of tau could be a viable clinical strategy in AD. One of the key phosphatases implicated in regulating tau protein phosphorylation is the serine-threonine phosphatase PP2A. We have determined that sodium selenate can act as a specific agonist for PP2A, significantly boosting phosphatase activity. Acute treatment of either neuroblastoma cells or normal aged mice with sodium selenate rapidly reduced tau protein phosphorylation. Sodium selenate-treated transgenic TAU441 mice had significantly lower levels of phospho- and total tau levels in the hippocampus and amygdala compared with controls and exhibited significantly improved spatial learning and memory on the Morris Water Maze task. Sodium selenate is a specific activator of PP2A with excellent oral bioavailability, and favourable central nervous system penetrating properties. Clinical studies in patients with AD are envisaged in the near future.


Journal of Clinical Neuroscience | 2009

Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas

Michael L.H. Wong; Amy Prawira; Andrew H. Kaye; Christopher M. Hovens

Angiogenesis is a key event in the progression of malignant gliomas. The presence of microvascular proliferation leads to the histological diagnosis of glioblastoma multiforme. Tumour angiogenesis involves multiple cellular processes including endothelial cell proliferation, migration, reorganisation of extracellular matrix and tube formation. These processes are regulated by numerous pro-angiogenic and anti-angiogenic growth factors. Angiogenesis inhibitors have been developed to interrupt the angiogenic process at the growth factor, receptor tyrosine kinase and intracellular kinase levels. Other anti-angiogenic therapies alter the immune response and endogeneous angiogenesis inhibitor levels. Most anti-angiogenic therapies for malignant gliomas are in Phase I/II trials and only modest efficacies are reported for monotherapies. The greatest potential for angiogenesis inhibitors may lie in their ability to combine safely with chemotherapy and radiotherapy.


BJUI | 2011

Upgrade in Gleason score between prostate biopsies and pathology following radical prostatectomy significantly impacts upon the risk of biochemical recurrence

Niall M. Corcoran; Matthew K.H. Hong; Rowan G. Casey; Antonio Hurtado-Coll; Justin Peters; Laurence Harewood; S. Larry Goldenberg; Christopher M. Hovens; Anthony J. Costello; Martin Gleave

Study Type – Prognosis (retrospective cohort)


BMC Genomics | 2014

Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array

Haroon Naeem; Nicholas C. Wong; Zac Chatterton; Matthew K.H. Hong; John Pedersen; Niall M. Corcoran; Christopher M. Hovens; Geoff Macintyre

BackgroundThe Illumina HumanMethylation450 BeadChip (HM450K) measures the DNA methylation of 485,512 CpGs in the human genome. The technology relies on hybridization of genomic fragments to probes on the chip. However, certain genomic factors may compromise the ability to measure methylation using the array such as single nucleotide polymorphisms (SNPs), small insertions and deletions (INDELs), repetitive DNA, and regions with reduced genomic complexity. Currently, there is no clear method or pipeline for determining which of the probes on the HM450K bead array should be retained for subsequent analysis in light of these issues.ResultsWe comprehensively assessed the effects of SNPs, INDELs, repeats and bisulfite induced reduced genomic complexity by comparing HM450K bead array results with whole genome bisulfite sequencing. We determined which CpG probes provided accurate or noisy signals. From this, we derived a set of high-quality probes that provide unadulterated measurements of DNA methylation.ConclusionsOur method significantly reduces the risk of false discoveries when using the HM450K bead array, while maximising the power of the array to detect methylation status genome-wide. Additionally, we demonstrate the utility of our method through extraction of biologically relevant epigenetic changes in prostate cancer.


Brain | 2015

Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury

Sandy R. Shultz; David K. Wright; Ping Zheng; Ryan Stuchbery; Shijie Liu; Maithili Sashindranath; Robert L. Medcalf; Leigh A. Johnston; Christopher M. Hovens; Nigel C. Jones; Terence J. O’Brien

Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.

Collaboration


Dive into the Christopher M. Hovens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin Peters

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikhil Sapre

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar

Marek Cmero

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge