Christopher M. Moy
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher M. Moy.
Nature | 2002
Christopher M. Moy; Geoffrey O. Seltzer; Donald T. Rodbell; David M. Anderson
The variability of El Niño/Southern Oscillation (ENSO) during the Holocene epoch, in particular on millennial timescales, is poorly understood. Palaeoclimate studies have documented ENSO variability for selected intervals in the Holocene, but most records are either too short or insufficiently resolved to investigate variability on millennial scales. Here we present a record of sedimentation in Laguna Pallcacocha, southern Ecuador, which is strongly influenced by ENSO variability, and covers the past 12,000 years continuously. We find that changes on a timescale of 2–8 years, which we attribute to warm ENSO events, become more frequent over the Holocene until about 1,200 years ago, and then decline towards the present. Periods of relatively high and low ENSO activity, alternating at a timescale of about 2,000 years, are superimposed on this long-term trend. We attribute the long-term trend to orbitally induced changes in insolation, and suggest internal ENSO dynamics as a possible cause of the millennial variability. However, the millennial oscillation will need to be confirmed in other ENSO proxy records.
Geology | 2010
Patricio I. Moreno; J. P. Francois; Christopher M. Moy; R. Villa-Martínez
A suite of mechanisms has been proposed to account for natural variations in atmospheric CO 2 during the Holocene; all of which have achieved limited success in reproducing the timing, direction, and magnitude of change. Recent modeling studies propose that changes in the latitudinal position and strength of the Southern Hemisphere Westerly Winds (SWW) can greatly influence large-scale ocean circulation and degassing of the deep ocean via changes in wind-driven upwelling in the Southern Ocean. The extent to which the hypothesized SWW–Southern Ocean coupled system could account for changes in atmospheric CO 2 is uncertain, because of a lack of observations on the behavior of the SWW in the past, the paucity of appropriate records of productivity changes in the Southern Ocean, and our limited understanding of the sensitivity of the Southern Ocean biological and/or physical system to SWW forcing. Here we report a reconstruction of the behavior of the SWW during the past 14 k.y. based on terrestrial ecosystem proxies from western Patagonia, South America. The reconstructed variations in the intensity of zonal flow correspond to the timing and structure of atmospheric CO 2 changes, and are consistent with the modeled magnitude of CO 2 changes induced by varying strengths of the SWW. The close match between data and models supports the view that the SWW–Southern Ocean coupled system underpins multimillennial CO 2 variations during the current interglacial and, possibly, during glacial cycles over the past 800 k.y.
Geology | 2009
Patricio I. Moreno; Michael R. Kaplan; J. P. Francois; R. Villa-Martínez; Christopher M. Moy; Charles R. Stern; Peter W. Kubik
Resolving the timing, direction, and magnitude of paleoclimate changes in the southern midlatitudes is a prerequisite for determining the mechanisms underlying abrupt and widespread climate changes between the hemispheres during the Last Glacial-Interglacial transition (LGIT). This issue is still debated, with previous studies producing apparently discordant fi ndings. Here we show evidence for a glacial readvance and a cold episode between ca. 14.8 and 12.6 ka in southwestern Patagonia (50°S), contemporaneous with the Antarctic cold reversal. This was followed by ice recession under cold but relatively milder conditions until ca. 11.5 ka, when paleovegetation records indicate the onset of warm interglacial conditions. These fi ndings differ from those reported in northern Patagonia (~40°S), where deteriorating conditions before 13.5 ka were followed by the coldest part of the LGIT that lasted until ca. 11.5 ka. We interpret the apparent blend of Greenlandic and Antarctic cold phases as evidence for their co-occurrence in the southern middle latitudes in Patagonia, and hypothesize that the position of the Antarctic Polar Front modulated the strength of these cold events in regions to the north or south of it.
Archive | 2009
Christopher M. Moy; Patricio I. Moreno; Robert B. Dunbar; Michael R. Kaplan; J. P. Francois; Ricardo Villalba; Torsten Haberzettl
Paleoclimate records from southern South America can be used to address important questions regarding the timing and nature of late-Holocene climate variability. During the last 30 years, many areas of southern South America have experienced rapid climatic and ecological changes that are driven by global and hemispheric-scale ocean-atmosphere processes. In order to place these recent changes in a longer-term context, we first present an overview of the modern climate processes relevant for the interpretation of paleoclimate records in southern South America, and then review records that have been developed from various archives that span the last two thousand years. Multiple paleoclimate records provide evidence for an overall decrease in temperature and an increase in westerly wind intensity that culminates in the last few hundred years during the time of the European Little Ice Age. We also find evidence for aridity generally coincident with the Medieval Climate Anomaly in several paleoclimate archives. Although much work has been done in this region, high-resolution well-dated archives are still needed from sensitive locations to improve our understanding of past and present climate change. From the paleoclimate records that we have compiled, we infer that warming, retreat of glaciers, and reconfiguration of precipitation patterns during the past century is unique within the context of the last 2000 years.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sean Paul Sandifer Gulick; John M. Jaeger; Alan C. Mix; Hirofumi Asahi; Heinrich Bahlburg; Christina L. Belanger; Gláucia Bueno Benedetti Berbel; Laurel B. Childress; Ellen A. Cowan; Laureen Drab; Matthias Forwick; Akemi Fukumura; Shulan Ge; Shyam M. Gupta; Arata Kioka; Susumu Konno; Leah J. LeVay; Christian März; Kenji M. Matsuzaki; Erin L. McClymont; Christopher M. Moy; Juliane Müller; Atsunori Nakamura; Takanori Ojima; Fabiana R. Ribeiro; Kenneth D. Ridgway; Oscar E Romero; Angela L. Slagle; Joseph S. Stoner; Guillaume St-Onge
Significance In coastal Alaska and the St. Elias orogen, over the past 1.2 million years, mass flux leaving the mountains due to glacial erosion exceeds the plate tectonic input. This finding underscores the power of climate in driving erosion rates, potential feedback mechanisms linking climate, erosion, and tectonics, and the complex nature of climate−tectonic coupling in transient responses toward longer-term dynamic equilibration of landscapes with ever-changing environments. Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.
Radiocarbon | 2006
Thomas P. Guilderson; E. Brendan Roark; Paul D. Quay; Sarah R Flood Page; Christopher M. Moy
Oceanic uptake and transport of bomb radiocarbon as 14CO2 created by atmospheric nuclear weapons testing in the 1950s and 1960s has been a useful diagnostic for determining the carbon transfer between the ocean and atmosphere. In addition, the distribution of 14C in the ocean can be used as a tracer of oceanic circulation. Results obtained on samples collected in the Gulf of Alaska in the summer of 2002 provide a direct comparison with results in the 1970s during GEOSECS and in the early 1990s during WOCE. The open gyre values are 20-40‰ lower than those documented in 1991 and 1993 (WOCE), although the general trends as a function of latitude are reproduced. Surface values are still significantly higher than pre-bomb levels (~-105‰ or lower). In the central gyre, we observe ∆14C values that are lower in comparison to GEOSECS (stn 218) and WOCE P16/P17 to a density of ~26.8σt. This observation is consistent with the overall decrease in surface ∆14C values and reflects the erosion of the bomb-14C transient. We propose that erosion of the bomb-14C transient is accomplished by entrainment of low-14C water via vertical exchange within the Gulf of Alaska and replenishment of surface and subthermocline waters with waters derived from the far northwest Pacific.
Geochemistry Geophysics Geosystems | 2014
Jessica L. Hinojosa; Christopher M. Moy; Claudine H. Stirling; Gary S. Wilson; Timothy I. Eglinton
Understanding carbon cycling in continental margin settings is critical for constraining the global carbon cycle. Here we apply a multiproxy geochemical approach to evaluate regional carbon cycle dynamics in six New Zealand fjords. Using carbon and nitrogen concentrations and isotopes, lipid biomarkers, and redox-sensitive element concentrations, we show that the New Zealand fjords have carbon-rich surface sediments in basins that promote long-term storage (i.e., semirestricted basins with sediment accumulation rates of up to 4 mm yr−1). Using δ13C distributions to develop a mixing model, we find that organic carbon in fjord sediments is well-mixed from marine and terrestrial sources in down-fjord gradients. This is driven by high regional precipitation rates of >6 m yr−1, which promote carbon accumulation in fjord basins through terrestrial runoff. In addition, we have identified at least two euxinic subbasins, based on uranium, molybdenum, iron, and cadmium enrichment, that contain >7% organic carbon. Because the strength and position of the Southern Hemisphere westerly winds control precipitation and fjord circulation, carbon delivery and storage in the region are intimately linked to westerly wind variability. We estimate that the fjord region (759 km2) may be exporting up to 1.4 × 107 kgC yr−1, outpacing other types of continental margins in rates of carbon burial by up to 3 orders of magnitude.
Geologica Acta | 2008
David Nicolas Waldmann; Daniel Ariztegui; Flavio S. Anselmetti; Jim Austin; Robert B. Dunbar; Christopher M. Moy; Cristina Recasens
Located at 54oS in the heart of the Island of Tierra del Fuego, Lago Fagnano occupies the deepest of a chain of en-echelon tectonic depressions along the Magallanes-Fagnano Transform system (MFT). A recent geophysical campaign combining 3.5 kHz (pinger) single-channel with 1 in3 airgun multi-channel systems surveyed more than 100 m of glacio-lacustrine sediments filling two main sub-basins. These data provide a unique opportunity to visualize the most recent lacustrine sequence with high-resolution while simultaneously imaging the oldest infill. A preliminary seismic stratigraphic analysis of the high-resolution 3.5 kHz pinger data allowed the identification of three major seismostratigraphic units (A, the oldest and C, the youngest). While unit A is interpreted as glacially derived sediments, the overlying unit B is interpreted as fining upward sequences of proglacial turbidites reflecting sediment pulses released by the retreating Fagnano glacier during the last deglaciation. A major environmental change occurred during deposition of unit C when pelagic style of sedimentation is intercalated by sequences of downslope mass flow events probably triggered by relatively strong tectonic pulses along the MFT system. Gravity cores show a regular alternation of light and dark laminae occasionally interrupted by homogenous sedimentary units interpreted as turbidites. Ultra-high resolution X-ray fluorescence micro-profiles show fluctuations in major trace elements at mm scale that may indicate seasonal variations in the sedimentary influx. These core data provide a unique record of decadal changes in regional climate that can be compared with other marine and continental archives to improve our understanding of the forcing mechanisms behind climate change.
The Holocene | 2014
Jonathan E. Nichols; Dorothy M. Peteet; Christopher M. Moy; Isla S. Castañeda; Alicia C. McGeachy; Max Perez
To constrain the effect of climate and peatland type on carbon accumulation, we reconstructed these parameters from a Holocene-length core of a Sphagnum-dominated peatland near Cordova, AK, USA. We determined peat type using a combination of peat texture and density, macrofossils, distributions of leaf-wax biomarkers, and soil pH reconstructions based on distributions of branched glycerol dialkyl glycerol tetraether lipids (brGDGTs). We produced an independent record of hydroclimate and temperature change using hydrogen isotope ratios of leaf-wax biomarkers and distributions of brGDGTs. Carbon accumulation rates were constrained with 14 AMS 14C dates from identified macrofossils and ash-free bulk density. In the early Holocene, the site was a shallow pond with evidence for emergent macrophytes, Sphagnum, and algae growing in a warm, moist climate. At 9.2 kyr (1 kyr = 1000 cal. yr BP), the site became a Sphagnum-dominated bog. Under mid-Holocene warm, evaporative climate conditions, the site became sedge-dominated. As climate cooled and effective precipitation increased, Sphagnum was able to gain dominance abruptly at ~3.5 kyr. Large changes in the vegetation assemblage and hydrology and climate are contemporaneous with significant changes in the rate of carbon accumulation. Carbon accumulated most rapidly when Sphagnum dominated and effective moisture was high and most slowly when sedges were dominant and conditions were warmer and drier. Estimates of future climate change indicate warmer, more evaporative conditions that, in the past, favored a sedge-dominated environment, suggesting that this peatland and those similar can contribute to a positive feedback to warming by transitioning to less efficient carbon sinks.
Scientific Reports | 2018
Patricio I. Moreno; Isabel Vilanova; R. Villa-Martínez; Robert B. Dunbar; David A. Mucciarone; Michael R. Kaplan; René D. Garreaud; Maisa Rojas; Christopher M. Moy; R. De Pol-Holz; Fabrice Lambert
The Southern Westerly Winds (SWW) are the surface expression of geostrophic winds that encircle the southern mid-latitudes. In conjunction with the Southern Ocean, they establish a coupled system that not only controls climate in the southern third of the world, but is also closely connected to the position of the Intertropical Convergence Zone and CO2 degassing from the deep ocean. Paradoxically, little is known about their behavior since the last ice age and relationships with mid-latitude glacier history and tropical climate variability. Here we present a lake sediment record from Chilean Patagonia (51°S) that reveals fluctuations of the low-level SWW at mid-latitudes, including strong westerlies during the Antarctic Cold Reversal, anomalously low intensity during the early Holocene, which was unfavorable for glacier growth, and strong SWW since ~7.5 ka. We detect nine positive Southern Annular Mode-like events at centennial timescale since ~5.8 ka that alternate with cold/wet intervals favorable for glacier expansions (Neoglaciations) in southern Patagonia. The correspondence of key features of mid-latitude atmospheric circulation with shifts in tropical climate since ~10 ka suggests that coherent climatic shifts in these regions have driven climate change in vast sectors of the Southern Hemisphere at centennial and millennial timescales.