Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher M. Sullivan is active.

Publication


Featured researches published by Christopher M. Sullivan.


PLOS ONE | 2007

High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes.

Noah Fahlgren; Miya D. Howell; Kristin D. Kasschau; Elisabeth J. Chapman; Christopher M. Sullivan; Jason S. Cumbie; Scott A. Givan; Theresa F. Law; Sarah R. Grant; Jeffery L. Dangl; James C. Carrington

In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.


PLOS Biology | 2007

Genome-Wide Profiling and Analysis of Arabidopsis siRNAs

Kristin D. Kasschau; Noah Fahlgren; Elisabeth J. Chapman; Christopher M. Sullivan; Jason S. Cumbie; Scott A. Givan; James C. Carrington

Eukaryotes contain a diversified set of small RNA-guided pathways that control genes, repeated sequences, and viruses at the transcriptional and posttranscriptional levels. Genome-wide profiles and analyses of small RNAs, particularly the large class of 24-nucleotide (nt) short interfering RNAs (siRNAs), were done for wild-type Arabidopsis thaliana and silencing pathway mutants with defects in three RNA-dependent RNA polymerase (RDR) and four Dicer-like (DCL) genes. The profiling involved direct analysis using a multiplexed, parallel-sequencing strategy. Small RNA-generating loci, especially those producing predominantly 24-nt siRNAs, were found to be highly correlated with repetitive elements across the genome. These were found to be largely RDR2- and DCL3-dependent, although alternative DCL activities were detected on a widespread level in the absence of DCL3. In contrast, no evidence for RDR2-alternative activities was detected. Analysis of RDR2- and DCL3-dependent small RNA accumulation patterns in and around protein-coding genes revealed that upstream gene regulatory sequences systematically lack siRNA-generating activities. Further, expression profiling suggested that relatively few genes, proximal to abundant 24-nt siRNAs, are regulated directly by RDR2- and DCL3-dependent silencing. We conclude that the widespread accumulation patterns for RDR2- and DCL3-dependent siRNAs throughout the Arabidopsis genome largely reflect mechanisms to silence highly repeated sequences.


PLOS Genetics | 2008

Network Discovery Pipeline Elucidates Conserved Time-of-Day–Specific cis-Regulatory Modules

Todd P. Michael; Todd C. Mockler; Ghislain Breton; Connor McEntee; Amanda Byer; Jonathan D Trout; Samuel P. Hazen; Rongkun Shen; Henry D. Priest; Christopher M. Sullivan; Scott A. Givan; Marcelo J. Yanovsky; Fangxin Hong; Steve A. Kay; Joanne Chory

Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants. In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data. To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions. We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment. Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis. We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX. We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression. Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice. These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


The Plant Cell | 2007

Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting

Miya D. Howell; Noah Fahlgren; Elisabeth J. Chapman; Jason S. Cumbie; Christopher M. Sullivan; Scott A. Givan; Kristin D. Kasschau; James C. Carrington

Posttranscriptional RNA silencing of many endogenous transcripts, viruses, and transgenes involves the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 (RDR6/DCL4)-dependent short interfering RNA (siRNA) biogenesis pathway. Arabidopsis thaliana contains several families of trans-acting siRNAs (tasiRNAs) that form in 21-nucleotide phased arrays through the RDR6/DCL4-dependent pathway and that negatively regulate target transcripts. Using deep sequencing technology and computational approaches, the phasing patterns of known tasiRNAs and tasiRNA-like loci from across the Arabidopsis genome were analyzed in wild-type plants and silencing-defective mutants. Several gene transcripts were found to be routed through the RDR6/DCL4-dependent pathway after initial targeting by one or multiple miRNAs or tasiRNAs, the most conspicuous example of which was an expanding clade of genes encoding pentatricopeptide repeat (PPR) proteins. Interestingly, phylogenetic analysis using Populus trichocarpa revealed evidence for small RNA–mediated regulatory mechanisms within a similarly expanded group of PPR genes. We suggest that posttranscriptional silencing mechanisms operate on an evolutionary scale to buffer the effects of rapidly expanding gene families.


The Plant Cell | 2010

Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection

Hernan Garcia-Ruiz; Atsushi Takeda; Elisabeth J. Chapman; Christopher M. Sullivan; Noah Fahlgren; Katherine J. Brempelis; James C. Carrington

Viruses promote infection by suppressing antiviral RNA silencing responses. Using suppressor-deficient and suppressor-competent Turnip mosaic virus, a genetic analysis of antiviral RNA silencing showed that Arabidopsis Dicers and RNA-dependent RNA polymerases have modular roles in antiviral defense. Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.


Nature Structural & Molecular Biology | 2010

Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis

Josh T. Cuperus; Alberto Carbonell; Noah Fahlgren; Hernan Garcia-Ruiz; Russell T. Burke; Atsushi Takeda; Christopher M. Sullivan; Sunny D. Gilbert; Taiowa A. Montgomery; James C. Carrington

RNA interference pathways can involve amplification of secondary siRNAs by RNA-dependent RNA polymerases. In plants, RDR6-dependent secondary siRNAs arise from transcripts targeted by some microRNAs (miRNAs). Here, Arabidopsis thaliana secondary siRNAs from mRNA as well as trans-acting siRNAs are shown to be triggered through initial targeting by a 22-nucleotide (nt) miRNA that associates with AGO1. In contrast to canonical 21-nt miRNAs, 22-nt miRNAs primarily arise from foldback precursors containing asymmetric bulges. Using artificial miRNA constructs, conversion of asymmetric foldbacks to symmetric foldbacks resulted in the production of 21-nt forms of miR173, miR472 and miR828. Both 21- and 22-nt forms associated with AGO1 and guided accurate slicer activity, but only 22-nt forms were competent to trigger RDR6-dependent siRNA production from target RNA. These data suggest that AGO1 functions differentially with 21- and 22-nt miRNAs to engage the RDR6-associated amplification apparatus.


Cold Spring Harbor Symposia on Quantitative Biology | 2007

The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis

Todd C. Mockler; Todd P. Michael; Henry D. Priest; Rongkun Shen; Christopher M. Sullivan; Scott A. Givan; Connor McEntee; Steve A. Kay; Joanne Chory

The DIURNAL project ( http://diurnal.cgrb.oregonstate.edu/ ) provides a graphical interface for mining and viewing diurnal and circadian microarray data for Arabidopsis thaliana, poplar, and rice. The database is searchable and provides access to several user-friendly Web-based data-mining tools with easy-to-understand output. The associated tools include HAYSTACK ( http://haystack.cgrb.oregonstate.edu/ ) and ELEMENT ( http://element.cgrb.oregonstate.edu/ ). HAYSTACK is a model-based pattern-matching algorithm for identifying genes that are coexpressed and potentially coregulated. HAYSTACK can be used to analyze virtually any large-scale microarray data set and provides an alternative method for clustering microarray data from any experimental system by grouping together genes whose expression patterns match the same or similar user-defined patterns. ELEMENT is a Web-based program for identifying potential cis-regulatory elements in the promoters of coregulated genes in Arabidopsis, poplar, and rice. Together, DIURNAL, HAYSTACK, and ELEMENT can be used to facilitate cross-species comparisons among the plant species supported and to accelerate functional genomics efforts in the laboratory.


The Plant Cell | 2010

MicroRNA Gene Evolution in Arabidopsis lyrata and Arabidopsis thaliana

Noah Fahlgren; Sanjuro Jogdeo; Kristin D. Kasschau; Christopher M. Sullivan; Elisabeth J. Chapman; Sascha Laubinger; Lisa M. Smith; Mark Dasenko; Scott A. Givan; Detlef Weigel; James C. Carrington

A whole-genome analysis of MIRNA from Arabidopsis thaliana and close relative Arabidopsis lyrata suggests that evolutionarily young MIRNA are diverging in sequence and function more rapidly than are more deeply conserved MIRNA. These and other results shed light on the birth, divergence, and death of MIRNA genes in plants. MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both whole-genome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (∼10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

AGO1-miR173 complex initiates phased siRNA formation in plants

Taiowa A. Montgomery; Seong Jeon Yoo; Noah Fahlgren; Sunny D. Gilbert; Miya D. Howell; Christopher M. Sullivan; Amanda L. Alexander; Goretti Nguyen; Edwards Allen; Ji Hoon Ahn; James C. Carrington

MicroRNA (miRNA)-guided cleavage initiates entry of primary transcripts into the transacting siRNA (tasiRNA) biogenesis pathway involving RNA-DEPENDENT RNA POLYMERASE6, DICER-LIKE4, and SUPPRESSOR OF GENE SILENCING3. Arabidopsis thaliana TAS1 and TAS2 families yield tasiRNA that form through miR173-guided initiation–cleavage of primary transcripts and target several transcripts encoding pentatricopeptide repeat proteins and proteins of unknown function. Here, the TAS1c locus was modified to produce synthetic (syn) tasiRNA to target an endogenous transcript encoding PHYTOENE DESATURASE and used to analyze the role of miR173 in routing of transcripts through the tasiRNA pathway. miR173 was unique from other miRNAs in its ability to initiate TAS1c-based syn-tasiRNA formation. A single miR173 target site was sufficient to route non-TAS transcripts into the pathway to yield phased siRNA. We also show that miR173 functions in association with ARGONAUTE 1 (AGO1) during TAS1 and TAS2 tasiRNA formation, and we provide data indicating that the miR173–AGO1 complex possesses unique functionality that many other miRNA–AGO1 complexes lack.

Collaboration


Dive into the Christopher M. Sullivan's collaboration.

Top Co-Authors

Avatar

James C. Carrington

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Noah Fahlgren

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline M. Press

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge