Christopher M. Taylor
LSU Health Sciences Center New Orleans
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher M. Taylor.
Biological Psychiatry | 2015
Annadora J. Bruce-Keller; J. Michael Salbaum; Meng Luo; Eugene Blanchard; Christopher M. Taylor; David A. Welsh; Hans-Rudolf Berthoud
BACKGROUNDnThe prevalence of mental illness, particularly depression and dementia, is increased by obesity. Here, we test the hypothesis that obesity-associated changes in gut microbiota are intrinsically able to impair neurocognitive behavior in mice.nnnMETHODSnConventionally housed, nonobese, adult male C57BL/6 mice maintained on a normal chow diet were subjected to a microbiome depletion/transplantation paradigm using microbiota isolated from donors on either a high-fat diet (HFD) or control diet. Following re-colonization, mice were subjected to comprehensive behavioral and biochemical analyses.nnnRESULTSnThe mice given HFD microbiota had significant and selective disruptions in exploratory, cognitive, and stereotypical behavior compared with mice with control diet microbiota in the absence of significant differences in body weight. Sequencing-based phylogenetic analysis confirmed the presence of distinct core microbiota between groups, with alterations in α- and β-diversity, modulation in taxonomic distribution, and statistically significant alterations to metabolically active taxa. HFD microbiota also disrupted markers of intestinal barrier function, increased circulating endotoxin, and increased lymphocyte expression of ionized calcium-binding adapter molecule 1, toll-like receptor 2, and toll-like receptor 4. Finally, evaluation of brain homogenates revealed that HFD-shaped microbiota increased neuroinflammation and disrupted cerebrovascular homeostasis.nnnCONCLUSIONSnCollectively, these data reinforce the link between gut dysbiosis and neurologic dysfunction and suggest that dietary and/or pharmacologic manipulation of gut microbiota could attenuate the neurologic complications of obesity.
Journal of Virology | 2013
Zhen Lin; Xia Wang; Michael J. Strong; Monica Concha; Melody Baddoo; Guorong Xu; Carl Baribault; Claire Fewell; William Hulme; Dale J. Hedges; Christopher M. Taylor; Erik K. Flemington
ABSTRACT Using a simple viral genome enrichment approach, we report the de novo assembly of the Akata and Mutu Epstein-Barr virus (EBV) genomes from a single lane of next-generation sequencing (NGS) reads. The Akata and Mutu viral genomes are type I EBV strains of approximately 171 kb in length. Evidence for genome heterogeneity was found for the Akata but not for the Mutu strain. A comparative analysis of Akata with another four completely sequenced EBV strains, B95-8/Raji, AG876, Mutu, and GD1, demonstrated that the Akata strain is most closely related to the GD1 strain and exhibits the greatest divergence from the type II strain, AG876. A global comparison of latent and lytic gene sequences showed that the four latency genes, EBNA2, EBNA3A, EBNA3B, and EBNA3C, are uniquely defining of type I and type II strain differences. Within type I strains, LMP1, the latency gene, is among the most divergent of all EBV genes, with three insertion or deletion loci in its CTAR2 and CTAR3 signaling domains. Analysis of the BHLF1 and LF3 genes showed that the reading frames identified in the B95-8/Raji genome are not conserved in Akata (or Mutu, for BHLF1), suggesting a primarily non-protein-coding function in EBVs life cycle. The Akata and Mutu viral-genome sequences should be a useful resource for homology-based functional prediction and for molecular studies, such as PCR, RNA-seq, recombineering, and transcriptome studies. As an illustration, we identified novel RNA-editing events in ebv-miR-BART6 antisense transcripts using the Akata and Mutu reference genomes.
PLOS Pathogens | 2013
Michael J. Strong; Guorong Xu; Joseph Coco; Carl Baribault; Dass S. Vinay; Michelle Lacey; Amy L. Strong; Teresa A. Lehman; Michael Seddon; Zhen Lin; Monica Concha; Melody Baddoo; MaryBeth Ferris; Kenneth F. Swan; Deborah E. Sullivan; Matthew E. Burow; Christopher M. Taylor; Erik K. Flemington
Epstein-Barr virus (EBV) is associated with roughly 10% of gastric carcinomas worldwide (EBVaGC). Although previous investigations provide a strong link between EBV and gastric carcinomas, these studies were performed using selected EBV gene probes. Using a cohort of gastric carcinoma RNA-seq data sets from The Cancer Genome Atlas (TCGA), we performed a quantitative and global assessment of EBV gene expression in gastric carcinomas and assessed EBV associated cellular pathway alterations. EBV transcripts were detected in 17% of samples but these samples varied significantly in EBV coverage depth. In four samples with the highest EBV coverage (hiEBVaGC – high EBV associated gastric carcinoma), transcripts from the BamHI A region comprised the majority of EBV reads. Expression of LMP2, and to a lesser extent, LMP1 were also observed as was evidence of abortive lytic replication. Analysis of cellular gene expression indicated significant immune cell infiltration and a predominant IFNG response in samples expressing high levels of EBV transcripts relative to samples expressing low or no EBV transcripts. Despite the apparent immune cell infiltration, high levels of the cytotoxic T-cell (CTL) and natural killer (NK) cell inhibitor, IDO1, was observed in the hiEBVaGCs samples suggesting an active tolerance inducing pathway in this subgroup. These results were confirmed in a separate cohort of 21 Vietnamese gastric carcinoma samples using qRT-PCR and on tissue samples using in situ hybridization and immunohistochemistry. Lastly, a panel of tumor suppressors and candidate oncogenes were expressed at lower levels in hiEBVaGC versus EBV-low and EBV-negative gastric cancers suggesting the direct regulation of tumor pathways by EBV.
PLOS Pathogens | 2014
Michael J. Strong; Guorong Xu; Lisa A. Morici; Sandra Splinter BonDurant; Melody Baddoo; Zhen Lin; Claire Fewell; Christopher M. Taylor; Erik K. Flemington
The high level of accuracy and sensitivity of next generation sequencing for quantifying genetic material across organismal boundaries gives it tremendous potential for pathogen discovery and diagnosis in human disease. Despite this promise, substantial bacterial contamination is routinely found in existing human-derived RNA-seq datasets that likely arises from environmental sources. This raises the need for stringent sequencing and analysis protocols for studies investigating sequence-based microbial signatures in clinical samples.
Journal of Pediatric Gastroenterology and Nutrition | 2013
Raegan W. Gupta; Lynn Tran; Johana Norori; Michael J. Ferris; A. Murat Eren; Christopher M. Taylor; Scot E. Dowd; Duna Penn
Objectives: Bacterial colonization is considered a major risk factor for necrotizing enterocolitis (NEC). The objective of the present study was to test the hypothesis that histamine-2 receptor (H2-) blockers alter colonic bacterial colonization by analyzing and comparing the fecal microbiota in premature infants with and without H2-blocker therapy using sensitive molecular biological techniques. Methods: Seventy-six premature infants ⩽1500 g or <34 weeks gestation were enrolled in this case-controlled, cross-sectional study. Stool samples were collected from 25 infants receiving H2-blockers and 51 babies who had never received them. Following DNA extraction and PCR amplification of 16S rRNA, 454 pyrosequencing was undertaken and the resulting sequences were subjected to comparison with published sequence libraries. Results: Proteobacteria and Firmicutes were the major phyla contributing to fecal microbial communities. Microbial diversity was lower, relative abundance of Proteobacteria (primarily of the family Enterobacteriaceae) was increased, whereas that of Firmicutes was decreased in the stools of infants receiving H2-blockers compared with those who had never received them. Conclusions: Although not designed to look specifically at the effect of H2-blockers on the incidence of NEC, our study suggests that their use lowers fecal microbial diversity and shifts the microfloral pattern toward Proteobacteria. These alterations in fecal microbiota may predispose the vulnerable immature gut to necrotizing enterocolitis and suggest prudence in the use of H2-blockers in the premature infant.
Nature Protocols | 2016
Hisham Mohammed; Christopher M. Taylor; Gordon D. Brown; Evaggelia K. Papachristou; Jason S. Carroll; Clive D'Santos
Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a method that allows the study of protein complexes, in particular chromatin and transcription factor complexes, in a rapid and robust manner by mass spectrometry (MS). The method can be used in parallel with chromatin immunoprecipitation–sequencing (ChIP-seq) experiments to provide information on both the cistrome and interactome for a given protein. The method uses formaldehyde fixation to stabilize protein complexes. By using antibodies against the endogenous target, the cross-linked complex is immunoprecipitated, rigorously washed, and then digested into peptides while avoiding antibody contamination (on-bead digestion). By using this method, MS identification of the target protein and several dozen interacting proteins is possible using a 100-min LC-MS/MS run. The protocol does not require substantial proteomics expertise, and it typically takes 2–3 d from the collection of material to results.
Mbio | 2015
Valarie E McMurtry; Raegan W. Gupta; Lynn Tran; Eugene Blanchard; Duna Penn; Christopher M. Taylor; Michael J. Ferris
BackgroundNecrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease that primarily affects premature infants. It is characterized by bowel inflammation and necrosis. In spite of extensive research, there has been little progress in decreasing the incidence or mortality of NEC over the past three decades. The exact etiology of NEC has not been identified. However, it is believed to result from an inappropriate immune response to gut microbiota. Using 454-pyrosequencing analyses of 16S rRNA genes that were PCR-amplified from stool DNA specimens, we compared the gut microbiota of infants with NEC to matched controls without NEC. The infants with NEC were then categorized into three subgroups based on severity: mild, severe, and lethal. We compared the microbiota among these subgroups and between each severity group and appropriate controls.ResultsBacterial diversity and the relative abundance of Actinobacteria and Clostridia were significantly lower in NEC specimens compared to controls. The absence of Clostridia was significantly associated with NEC. Microbial diversity and Clostridia abundance and prevalence decreased with increasing severity of NEC.ConclusionsLow bacterial diversity in stool specimens may be indicative of NEC and the severity of NEC. The low bacterial diversity, and the lack of Clostridia in lethal specimens, could indicate that the presence of a diverse bacterial population in the gut as well as the presence of taxa such as Clostridia may play a role in attenuating inflammation leading to NEC.
Journal of Pediatric Gastroenterology and Nutrition | 2010
Krishnappa Venkatesh; Ashraf Abou-Taleb; Marta C. Cohen; Clair Evans; Steven Thomas; Philip Oliver; Christopher M. Taylor; Mike Thomson
Background and Aims: Confocal laser endomicroscopy (CLE) is a recent development that enables surface and subsurface imaging of living cells in vivo at 1000× magnification. The aims of the present study were to define confocal features of celiac disease (CD) and to evaluate the usefulness of the CLE in the diagnosis of CD in children in comparison to histology. Patients and Methods: Nine patients (8 girls) with a median age of 8.35 years (range 2–12.66 years) and a median weight of 28.3 kg (range 11–71 kg) were suspected with CD and 10 matched controls underwent oesophagogastroduodenoscopy using the confocal laser endomicroscope (EC3870CILK; Pentax, Tokyo, Japan). Histologic sections were compared with the confocal images of the same site by 2 experienced paediatric histopathologists and endoscopists, all of whom were blinded to the diagnosis. Results: The median procedure time was 17 minutes (range 8–25 minutes). Confocal features of CD were defined and a score was developed. A total of 1384 confocal images were collected from 9 patients and 10 controls. Five images from each patient and control were selected and compared with the biopsy specimen of the same site. The sensitivity, specificity, and positive predictive value for the confocal images in comparison to the histology were 100%, 80%, and 81%. The kappa inter-observer agreement between the 2 endoscopists was 0.769 (P = 0.018) and between the 2 histopathologists was 0.571 (P = 0.05). Conclusions: Confocal endomicroscopy offers the prospect of diagnosis of CD during ongoing endoscopy. It also enables targeting biopsies to abnormal mucosa and thereby increasing the diagnostic yield, especially when villous atrophy is patchy in the duodenum.
Journal of Virology | 2012
Zhen Lin; Adriane Puetter; Joseph Coco; Guorong Xu; Michael J. Strong; Xia Wang; Claire Fewell; Melody Baddoo; Christopher M. Taylor; Erik K. Flemington
ABSTRACT Many cell lines commonly used for biological studies have been found to harbor exogenous agents such as the human tumor viruses Epstein-Barr virus (EBV) and human papillomavirus. Nevertheless, broad-based, unbiased approaches to globally assess the presence of ectopic organisms within cell model systems have not previously been available. We reasoned that high-throughput sequencing should provide unparalleled insights into the microbiomes of tissue culture cell systems. Here we have used our RNA-seq analysis pipeline, PARSES (Pipeline for Analysis of RNA-Seq Exogenous Sequences), to investigate the presence of ectopic organisms within two EBV-positive B-cell lines commonly used by EBV researchers. Sequencing data sets from both the Akata and JY B-cell lines were found to contain reads for EBV, and the JY data set was found to also contain reads from the murine leukemia virus (MuLV). Further investigation revealed that MuLV transcription in JY cells is highly active. We also identified a number of MuLV alternative splicing events, and we uncovered evidence of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G)-dependent DNA editing. Finally, reverse transcription-PCR analysis showed the presence of MuLV in three other human B-cell lines (DG75, Ramos, and P3HR1 Cl.13) commonly used by investigators in the Epstein-Barr virus field. We believe that a thorough examination of tissue culture microbiomes using RNA-seq/PARSES-like approaches is critical for the appropriate utilization of these systems in biological studies.
Journal of Experimental Medicine | 2017
Baokun He; Thomas K. Hoang; Ting Wang; Michael J. Ferris; Christopher M. Taylor; Xiangjun Tian; Meng Luo; Dat Q. Tran; Jain Zhou; Nina Tatevian; Fayong Luo; Jose G. Molina; Michael R. Blackburn; Thomas H. Gomez; Stefan Roos; J. Marc Rhoads; Yuying Liu
Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell–driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency–mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota–inosine–A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction.