Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher M. Wallis is active.

Publication


Featured researches published by Christopher M. Wallis.


Journal of Chemical Ecology | 2011

Ecosystem, Location, and Climate Effects on Foliar Secondary Metabolites of Lodgepole Pine Populations from Central British Columbia

Christopher M. Wallis; Dezene P. W. Huber; Kathy J. Lewis

Lodgepole pines, Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson, are encountering increased abiotic stress and pest activity due to recent increases in temperature and changes in precipitation throughout their range. This tree species counters these threats by producing secondary metabolites, including phenolics and terpenoids. We examined foliar levels of lignin, soluble phenolics, monoterpenoids, sesquiterpenoids, and diterpenoids in 12 stands in British Columbia, Canada. We used these data to assess associations among foliar secondary metabolite levels and ecosystem, geographic, and climatic variables. Regressions were also performed to observe which combinations of variables best explained secondary metabolite variance. Stands of P. c. latifolia in the Coastal Western Hemlock and Interior Cedar/Hemlock biogeoclimatic zones had consistently greater foliar levels of almost all measured secondary metabolites than did other stands. Lignin was present in greater amounts in Boreal White/Black Spruce ecosystem (i.e., northern) stands than in southern stands, suggesting a role for this metabolite in pine survival in the boreal forest. Attempts to develop regression models with geographic and climatic variables to explain foliar secondary metabolite levels resulted in multiple models with similar predictive capability. Since foliar secondary metabolite levels appeared to vary most between stand ecosystem types and not as much due to geographic and climatic variables, metabolic profiles appeared best matched to the stress levels within local environments. It is unknown if differences in secondary metabolite levels are the result of genetic adaptation or phenotypic plasticity, but results from this and other studies suggest that both are important. These results are interpreted in light of ongoing efforts to assist in the migration of certain populations of P. c. latifolia northward in an effort to counter predicted effects of climate change.


Frontiers in Plant Science | 2013

Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease.

Christopher M. Wallis; Anna K. Wallingford; Jianchi Chen

The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierces disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor.


Journal of Economic Entomology | 2015

Effects of Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Feeding, Size, and Lipid Content on Egg Maturation

Mark S. Sisterson; Christopher M. Wallis; Drake C. Stenger

ABSTRACT The glassy-winged sharpshooter (Homalodisca vitripennis) is synovigenic and must feed as an adult to produce eggs. Egg maturation rates depend on the host plant species provided to the adult female for feeding and are variable for females provided with the same host plant species. Here, the contribution of female size and lipid content to variation in egg maturation rates among females held on the same host plant species was assessed. To assess effects of female size and lipid content on egg maturation, feeding assays followed by measurements of egg load, female size, and lipid content were conducted. To accomplish this, females were field collected and held on cowpea until producing approximately 0, 12, 25, or 50 ml of excreta. After reaching prescribed excreta thresholds, females were dissected to determine egg load, hind tibia length, and head capsule width. Mature eggs were removed from the abdomen and dry weight of eggs and bodies (head, thorax, and abdomen) were obtained. Lipid content of eggs and bodies were determined using a quantitative colorimetric assay. Rates of body weight gain and body lipid gain were rapid with low levels of feeding (12 ml of excreta) but decelerated with additional feeding (>12 ml of excreta). In contrast, low levels of feeding (12 ml of excreta) resulted in little egg production, with rates of egg production accelerating with additional feeding (>12 ml of excreta). Accordingly, egg production was preceded by an increase in body dry weight and body lipid content. In agreement, probability that a female carried eggs increased with body lipid content in the 0-, 12-, and 25-ml feeding treatments. Across treatments, larger females carried more eggs than smaller females. Collectively, results suggest that variation in glassy-winged sharpshooter egg maturation rates partially may be explained by availability of lipid reserves at the start of a feeding bout and female size.


Environmental Entomology | 2015

Indirect Effects of One Plant Pathogen on the Transmission of a Second Pathogen and the Behavior of its Potato Psyllid Vector

Sean M. Prager; Christopher M. Wallis; John T. Trumble

ABSTRACT Plant pathogens can influence the behavior and performance of insect herbivores. Studies of these associations typically focus on tripartite interactions between a plant host, a plant pathogen, and its insect vector. An unrelated herbivore or pathogen might influence such interactions. This study used a model system consisting of Tobacco mosaic virus (TMV), the psyllid Bactericera cockerelli Sulc, and tomatoes to investigate multipartite interactions among a pathogen, a nonvector, and a plant host, and determine whether shifts in host physiology were behind potential interactions. Additionally, the ability of TMV to affect the success of another pathogen, ‘Candidatus Liberibacter solanacearum,’ which is transmitted by the psyllid, was studied. In choice trials, psyllids preferred nearly fourfold noninfected plants to TMV-infected plants. No-choice bioassays demonstrated that there was no difference in psyllid development between TMV-infected and control plants; oviposition was twice as high on control plants. Following inoculation by psyllids, ‘Candidatus Liberibacter solanacearum’ titers were lower in TMVinfected plants than control plants. TMV-infected plants had lower levels of amino acids and sugars but little differences in phenolics and terpenoids, relative to control plants. Possibly, these changes in sugars are associated with a reduction in psyllid attractiveness in TMV-infected tomatoes resulting in decreased infection of ‘Candidatus Liberibacter solanacearum.’


Journal of Economic Entomology | 2017

Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins

Felix A. Cervantes; Elaine A. Backus; Larry D. Godfrey; Christopher M. Wallis; Waseem Akbar; Thomas L. Clark; M. G. Rojas

Abstract Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest.


Environmental Entomology | 2017

Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants

Mark S. Sisterson; Christopher M. Wallis; Drake C. Stenger

Abstract Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing.


Genome Announcements | 2015

De Novo Genome Sequence of "Candidatus Liberibacter solanacearum" from a Single Potato Psyllid in California.

F. Wu; Xiaoling Deng; Guangwen Liang; Christopher M. Wallis; John T. Trumble; Sean M. Prager; J. Chen

ABSTRACT The draft genome sequence of “Candidatus Liberibacter solanacearum” strain RSTM from a potato psyllid (Bactericera cockerelli) in California is reported here. The RSTM strain has a genome size of 1,286,787 bp, a G+C content of 35.1%, 1,211 predicted open reading frames (ORFs), and 43 RNA genes.


Journal of Economic Entomology | 2018

Effects of Energy Reserves and Diet on Glassy-Winged Sharpshooter Egg Maturation

Mark S. Sisterson; Rodrigo Krugner; Christopher M. Wallis; Drake C. Stenger

Abstract The glassy-winged sharpshooter is an invasive insect capable of transmitting the plant pathogen Xylella fastidiosa. As rates of pathogen spread are a function of vector abundance, identification of factors contributing to glassy-winged sharpshooter egg production will aid in predicting population growth. Here, effects of stored energy reserves and adult diet on glassy-winged sharpshooter egg maturation were evaluated.To estimate energy reserves available to adult females at the beginning of feeding assays, residuals from a regression of wet weight on size were used. Analysis of a subset of females sacrificed at the beginning of feeding assays, demonstrated that females with a positive residual wet weight had higher lipid content and carried more eggs than females with a negative residual wet weight.To evaluate effects of diet and energy reserves on egg maturation, energy reserves available to females entering feeding assays on cowpea and grapevine were estimated. For females held on cowpea, residual wet weight and quantity of excreta produced over a 6-d feeding period affected egg production. In contrast, for females held on grapevine, only residual wet weight affected egg production. Comparison of cowpea and grapevine xylem sap determined that eight amino acids were more concentrated in xylem sap from cowpea than from grapevine. Collectively, the results suggest that glassy-winged sharpshooter population growth within crop monocultures will not depend solely on the nutritional quality of the specific crop for producing mature eggs but also on the quantity of energy reserves accumulated by females prior to entering that crop habitat.


Journal of Economic Entomology | 2018

Examining the Potential Role of Foliar Chemistry in Imparting Potato Germplasm Tolerance to Potato Psyllid, Green Peach Aphid, and Zebra Chip Disease

Sean M. Prager; Christopher M. Wallis; Michele Eatough Jones; R Novy; John T. Trumble

Abstract Long-term, sustainable management of zebra chip disease of potato, caused by ‘Candidatus Liberibacter solanacearum’ (Lso) and vectored by potato psyllids (Bactericera cockerelli Sulc [Hemiptera: Triozidae]), requires development of cultivars resistant or tolerant to infection or capable of reducing spread or both. We examined the influence that five experimental breeding clones of potato had on potato psyllids and their ability to vector Lso.The ability of these potato clones to resist aphids (green peach aphids, Myzus persicae Sulzer [Hemiptera: Aphididae]) also was examined. Due to the importance of host chemistry on plant–insect interactions, levels of primary metabolites of amino acids and sugars, as well as secondary metabolites including polyphenolics, terpenoids, and alkaloids were compared between breeding clones and a commercial cultivar. Findings for compound levels then were associated with observed changes in host susceptibility to psyllids or aphids. Psyllids oviposited less on three breeding clones than Atlantic, but no significant effects of breeding clones on psyllid feeding or choice were observed. Aphid reproduction was reduced on two clones relative to Atlantic. A05379-211 had greater sugar levels and postpsyllid amino acid levels than Atlantic.Total alkaloid and phenolic levels were greater in all breeding clones than Atlantic.Total terpenoid levels were greater in PALB03016-3 and PALB03016-6 than Atlantic, which might explain, in part, the observed resistance to psyllid oviposition and aphid reproduction. Overall, these results suggest that increased levels of certain metabolites in breeding clones could affect psyllid and aphid reproduction.


Canadian Journal of Plant Pathology-revue Canadienne De Phytopathologie | 2016

Effects of Grapevine red blotch-associated virus (GRBaV) infection on foliar metabolism of grapevines

Christopher M. Wallis; Mysore R. Sudarshana

Abstract Grapevine red blotch-associated virus (GRBaV), which causes grapevine red blotch disease, is an emerging problem for grapevine production in the United States. However, little is known about how viruses, such as GRBaV, affect host physiology even though it is crucial to understanding host-pathogen interactions, symptom development, and potential effects on other pathogens and insect pests including potential vectors. Thus, foliar levels of amino acids, sugars, phenolics and terpenoids were examined in healthy or GRBaV-infected ‘Cabernet Franc’ (CF) or ‘Cabernet Sauvignon’ (CS) grapevines both before and after development of red blotch symptoms, in July and September of 2014, respectively. Particular amino acids were increased both before and after symptom development in both cultivars, with some of these amino acids having previously defined associations with host defences. Fructose and glucose were increased in GRBaV-infected CF at both sampling times. However, for CS only, glucose was increased in infected grapevines and only when pre-symptomatic. Phenolic levels were greater in GRBaV-infected CF and CS after symptom expression. Terpenoids were greater in infected CF in July, with no other apparent differences. Taken together, these results demonstrate the effects of GRBaV infection on host physiology, with shifts potentially associated with symptom development and changes in resistance to other organisms.

Collaboration


Dive into the Christopher M. Wallis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean M. Prager

University of California

View shared research outputs
Top Co-Authors

Avatar

Drake C. Stenger

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jianchi Chen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mark S. Sisterson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Anna K. Wallingford

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Dezene P. W. Huber

University of Northern British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kathy J. Lewis

University of Northern British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge