Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Mark Bragg is active.

Publication


Featured researches published by Christopher Mark Bragg.


Radiotherapy and Oncology | 2008

Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification

Christopher Mark Bragg; Katrina Wingate; J. Conway

PURPOSE To determine the implications of the use of the Anisotropic Analytical Algorithm (AAA) for the production and dosimetric verification of IMRT plans for treatments of the prostate, parotid, nasopharynx and lung. METHODS 72 IMRT treatment plans produced using the Pencil Beam Convolution (PBC) algorithm were recalculated using the AAA and the dose distributions compared. Twenty-four of the plans were delivered to inhomogeneous phantoms and verification measurements made using a pinpoint ionisation chamber. The agreement between the AAA and measurement was determined. RESULTS Small differences were seen in the prostate plans, with the AAA predicting slightly lower minimum PTV doses. In the parotid plans, there were small increases in the lens and contralateral parotid doses while the nasopharyngeal plans revealed a reduction in the volume of the PTV covered by the 95% isodose (the V(95%)) when the AAA was used. Large changes were seen in the lung plans, the AAA predicting reductions in the minimum PTV dose and large reductions in the V(95%). The AAA also predicted small increases in the mean dose to the normal lung and the V(20). In the verification measurements, all AAA calculations were within 3% or 3.5mm distance to agreement of the measured doses. CONCLUSIONS The AAA should be used in preference to the PBC algorithm for treatments involving low density tissue but this may necessitate re-evaluation of plan acceptability criteria. Improvements to the Multi-Resolution Dose Calculation algorithm used in the inverse planning are required to reduce the convergence error in the presence of lung tissue. There was excellent agreement between the AAA and verification measurements for all sites.


International Journal of Radiation Oncology Biology Physics | 2002

The role Of intensity-modulated radiotherapy in the treatment of parotid tumors

Christopher Mark Bragg; J. Conway; Martin Robinson

PURPOSE To compare intensity-modulated radiotherapy (IMRT) treatment plans with three-dimensional conformal radiotherapy (3D-CRT) plans to investigate the suitability of IMRT for the treatment of tumors of the parotid gland. METHODS AND MATERIALS One 3D-CRT treatment plan and 10 IMRT treatment plans with differing beam arrangements were produced for each of nine patient data sets. The plans were compared using regret analysis, dose conformity, dose to organs at risk, and uncomplicated tumor control probability (UTCP). RESULTS The target dose was comparable in the 3D-CRT and IMRT plans, although improvements were seen when seven and nine IMRT fields were used. IMRT reduced the mean dose to the contralateral parotid gland and the maximum doses to the brain and the spinal cord, but increased the ipsilateral lens dose in some cases. Each IMRT arrangement produced a higher UTCP than the 3D-CRT plans; the largest absolute difference was 9.6%. CONCLUSIONS IMRT is a suitable means for treating cancer of the parotid, and a five-field class solution is proposed. It produced substantial sparing of organs at risk and higher UTCPs than 3D-CRT and should enable dose escalation.


Radiotherapy and Oncology | 2009

Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study

Emma Bates; Christopher Mark Bragg; Jim M. Wild; M.Q. Hatton; Rob H. Ireland

BACKGROUND AND PURPOSE To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging ((3)He-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). MATERIAL AND METHODS Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >or=20Gy (V(20)), and the other to minimise only the functional lung volume receiving >or=20Gy (FV(20)). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V(PTV95)/FV(20)) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. RESULTS Compared to anatomical IMRT plans, functional planning reduced FV(20) (median 2.7%, range 0.6-3.5%, p=0.02), and total lung V(20) (median 1.5%, 0.5-2.7%, p=0.02), with a small reduction in mean functional lung dose (median 0.4Gy, 0-0.7Gy, p=0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p=0.02). CONCLUSIONS Statistically significant reductions in FV(20), V(20) and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or (3)He-MRI.


Physics in Medicine and Biology | 2010

Dosimetric evaluation of inspiration and expiration breath-hold for intensity-modulated radiotherapy planning of non-small cell lung cancer.

Bilal Tahir; Christopher Mark Bragg; Sarah E Lawless; M.Q. Hatton; Rob H. Ireland

The purpose of this study was to compare target coverage and lung tissue sparing between inspiration and expiration breath-hold intensity-modulated radiotherapy (IMRT) plans for patients with non-small cell lung cancer (NSCLC). In a prospective study, seven NSCLC patients gave written consent to undergo both moderate deep inspiration and end-expiration breath-hold computed tomography (CT), which were used to generate five-field IMRT plans. Dose was calculated with a scatter and an inhomogeneity correction algorithm. The percentage of the planning target volume (PTV) receiving 90% of the prescription dose (PTV(90)), the volume of total lung receiving >or=10 Gy (V(10)) and >or=20 Gy (V(20)) and the mean lung dose (MLD) were compared by the Students paired t-test. Compared with the expiration plans, the mean +/- SD reductions for V(10), V(20) and MLD on the inspiration plans were 4.0 +/- 3.7% (p = 0.031), 2.5 +/- 2.3% (p = 0.028) and 1.1 +/- 0.7 Gy (p = 0.007), respectively. Conversely, a mean difference of 1.1 +/- 1.1% (p = 0.044) in PTV(90) was demonstrated in favour of expiration. When using IMRT, inspiration breath-hold can reduce the dose to normal lung tissue while expiration breath-hold can improve the target coverage. The improved lung sparing at inspiration may outweigh the modest improvements in target coverage at expiration.


Physics in Medicine and Biology | 2017

Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

Bilal Tahir; Christopher Mark Bragg; Jim M. Wild; James A. Swinscoe; Sarah E Lawless; Kerry Hart; M.Q. Hatton; Rob H. Ireland

To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3%; p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.


Journal of Radiotherapy in Practice | 2015

Exploration of risk factors for weight loss in head and neck cancer patients

Patrick Dawson; Amy Taylor; Christopher Mark Bragg

Introduction Head and neck cancer patients receiving radiotherapy can experience a number of toxicities, including weight loss and malnutrition, which can impact upon the quality of treatment. The purpose of this retrospective cohort study is to evaluate weight loss and identify predictive factors for this patient group. Materials and methods A total of 40 patients treated with radiotherapy since 2012 at the study centre were selected for analysis. Data were collected from patient records. The association between potential risk factors and weight loss was investigated. Results Mean weight loss was 5 kg (6%). In all, 24 patients lost >5% starting body weight. Age, T-stage, N-stage, chemotherapy and starting body weight were individually associated with significant differences in weight loss. On multiple linear regression analysis age and nodal status were predictive. Conclusion Younger patients and those with nodal disease were most at risk of weight loss. Other studies have identified the same risk factors along with several other variables. The relative significance of each along with a number of other potential factors is yet to be fully understood. Further research is required to help identify patients most at risk of weight loss; and assess interventions aimed at preventing weight loss and malnutrition.


Medical Dosimetry | 2017

Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.

Chloe C H Ong; Khong Wei Ang; Roger Cai Xiang Soh; Kah Ming Tin; Jerome H H Yap; James Cheow Lei Lee; Christopher Mark Bragg

There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT.


Journal of Radiotherapy in Practice | 2011

Assessment of the dosimetric consequences of prostate movement through rectal distension for patients receiving 3DCRT

D.J. Redding; Christopher Mark Bragg

Purpose: To investigate the dosimetric consequences of rectal distension at the time of the planning computed tomography (CT) scan and any resultant prostate movement on the planned dose delivery for patients receiving three-dimensional conformal radiotherapy (3DCRT) to the prostate. Methods and materials: 25 prostate cancer patients whose planning CT scan demonstrated a full rectum were rescanned after following a laxative protocol. Rectal dimensions on the two scans and 3DCRT treatment plans produced on each plan were compared. The dosimetric implications of changes in rectal size on the treatment plans and the delivered dose were determined. Statistical significance was evaluated with the Wilcoxon signed ranks test. Results: Significant differences in rectal size were found between the initial CT scan and the rescan. The corresponding median change in prostate position was 4.7 mm. The use of planning scans with a full rectum, that is unrepresentative of the rectum, during treatment causes significant reductions in planning target volume (PTV) minimum dose (median reduction 33.7%) and coverage by the 95% isodose (median reduction 3.7% of the PTV). Conclusion: Rectal distension on the initial planning scan can lead to significant PTV underdosage. Patients presenting with large initial rectal fillings must be rescanned in order to avoid a systematic underdosing of the PTV.


International Journal of Radiation Oncology Biology Physics | 2007

Feasibility of image registration and Intensity-Modulated Radiotherapy planning with hyperpolarized helium-3 Magnetic Resonance Imaging for non-small cell lung cancer

Rob H. Ireland; Christopher Mark Bragg; Mark McJury; Neil Woodhouse; Stan Fichele; Edwin Jacques Rudolph van Beek; Jim M. Wild; M.Q. Hatton


Radiotherapy and Oncology | 2006

Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning.

Christopher Mark Bragg; J. Conway

Collaboration


Dive into the Christopher Mark Bragg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi Probst

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar

Jim M. Wild

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar

D. Dodwell

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Top Co-Authors

Avatar

David Green

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar

John Hart

Sheffield Hallam University

View shared research outputs
Top Co-Authors

Avatar

Amy Taylor

Sheffield Hallam University

View shared research outputs
Researchain Logo
Decentralizing Knowledge