Christopher Mark Smales
University of Kent
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher Mark Smales.
Biotechnology and Bioengineering | 2004
Christopher Mark Smales; Diane M. Dinnis; Scott H. Stansfield; Daniel E. Alete; E.A. Sage; John R. Birch; Andrew J. Racher; Carol T. Marshall; David C. James
We previously compared changes in individual protein abundance between the proteomes of GS‐NS0 cell lines with varying rates of cell‐specific recombinant monoclonal antibody production (qMab). Here we extend analyses of our proteomic dataset to statistically determine if particular cell lines have distinct functional capabilities that facilitate production of secreted recombinant Mab. We categorized 79 proteins identified by mass spectrometry according to their biological function or location in the cell and statistically compared the relative abundance of proteins in each category between GS‐NS0 cell lines with varying qMab. We found that the relative abundance of proteins in ER chaperone, non‐ER chaperone, cytoskeletal, cell signaling, metabolic, and mitochondrial categories were significantly increased with qMab. As the GS‐NS0 cell line with highest qMab also had an increased intracellular abundance of unassembled Mab heavy chain (HC), we tested the hypothesis that the increased ER chaperone content was caused by induction of an unfolded protein response (UPR) signaling pathway. Immunoblot analyses revealed that spliced X‐box binding protein 1 (XBP1), a marker for UPR induction, was not detectable in the GS‐NS0 cells with elevated qMab, although it was induced by chemical inhibitors of protein folding. These data suggest that qMab is functionally related to the abundance of specific categories of proteins that together facilitate recombinant protein production. We infer that individual cells within parental populations are more functionally equipped for high‐level recombinant protein production than others and that this bias could be used to select cells that are more likely to achieve high qMab.
Allergy | 2001
Paul J. Davis; Christopher Mark Smales; David C. James
This paper is a brief review of thermally induced covalent modifications to proteins in foods, focussing mainly on the advanced glycation end‐products (AGE) of the Maillard reaction. Most foods are subjected to thermal processing, either in the home or during their production/manufacture. Thermal processing provides many beneficial effects, but also brings about major changes in allergenicity. Far from being a general way to decrease allergenic risk, thermal processing is as likely to increase allergenicity as to reduce it, through the introduction of neoantigens. These changes are highly complex and not easily predictable, but there are a number of major chemical pathways that lead to distinct patterns of modification. Perhaps the most important of these is through the reaction of protein amino groups with sugars, leading to an impressive cocktail of AGE‐modified protein derivatives. These are antigenic and many of the important neoantigens found in cooked or stored foods are probably such Maillard reaction products. A deeper understanding of thermally induced chemical changes is essential for more advanced risk assessments, more effective QC protocols, production of more relevant diagnostic allergen extracts and the development of novel protein engineering and therapeutic approaches to minimise allergenic risk.
Biotechnology and Bioengineering | 2012
Andrew S. Tait; Catherine E.M. Hogwood; Christopher Mark Smales; Daniel G. Bracewell
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS‐CHO monoclonal antibody producing mammalian cell line grown in fed‐batch mode. Using 2D‐PAGE and LC‐MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI‐TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI‐TOF analysis showed the same trends in the HCP profile as observed by 2D‐PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile. Biotechnol. Bioeng. 2012; 109:971–982.
Biotechnology and Bioengineering | 2015
Daniel G. Bracewell; Richard Francis; Christopher Mark Smales
The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme‐linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk‐based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar initiatives. The development of such an approach requires databases based on cumulative knowledge of multiple risk factors that would require national and international regulators, standards authorities (e.g., NIST and NIBSC), industry and academia to all be involved in shaping what is the best approach to the adoption of the latest bioanalytical technology to this area, which is vital to delivering safe efficacious biological medicines of all types. Biotechnol. Bioeng. 2015;112: 1727–1737.
Biotechnology and Bioengineering | 2010
C.Q. Reid; Andrew S. Tait; Helen Baldascini; A. Mohindra; Andrew J. Racher; S. Bilsborough; Christopher Mark Smales; Michael Hoare
With the trend towards the generation and production of increasing numbers of complex biopharmaceutical (protein based) products, there is an increased need and requirement to characterize both the product and production process in terms of robustness and reproducibility. This is of particular importance for products from mammalian cell culture which have large molecular structures and more often than not complex post‐translational modifications (PTMs) that can impact the efficacy, stability and ultimately the safety of the final product. It is therefore vital to understand how the operating conditions of a bioprocess affect the distribution and make up of these PTMs to ensure a consistent quality and activity in the final product. Here we have characterized a typical bioprocess and determined (a) how the time of harvest from a mammalian cell culture and, (b) through the use of an ultra scale‐down mimic how the nature of the primary recovery stages, affect the distribution and make up of the PTMs observed on a recombinant IgG4 monoclonal antibody. In particular we describe the use of rapid whole antibody analysis by mass spectrometry to analyze simultaneously the changes that occur to the cleavage of heavy chain C‐terminal lysine residues and the glycosylation pattern, as well as the presence of HL dimers. The time of harvest was found to have a large impact upon the range of glycosylation patterns observed, but not upon C‐terminal lysine cleavage. The culture age had a profound impact on the ratio of different glycan moieties found on antibody molecules. The proportion of short glycans increased (e.g., (G0F)2 20–35%), with an associated decrease in the proportion of long glycans with culture age (e.g., (G2F)2 7–4%, and G1F/G2F from 15.2% to 7.8%). Ultra scale‐down mimics showed that subsequent processing of these cultures did not change the post‐translational modifications investigated, but did increase the proportion of half antibodies present in the process stream. The combination of ultra scale‐down methodology and whole antibody analysis by mass spectrometry has demonstrated that the effects of processing on the detailed molecular structure of a monoclonal antibody can be rapidly determined early in the development process. In this study we have demonstrated this analysis to be applicable to critical process design decisions (e.g., time of harvest) in terms of achieving a desired molecular structure, but this approach could also be applied as a selection criterion as to the suitability of a platform process for the preparation of a new drug candidate. Also the methodology provides means for bioprocess engineers to predict at the discovery phase how a bioprocess will impact upon the quality of the final product. Biotechnol. Bioeng. 2010;107: 85–95.
Current Opinion in Biotechnology | 2014
Catherine E.M. Hogwood; Daniel G. Bracewell; Christopher Mark Smales
Chinese hamster ovary (CHO) cells are widely used for the production of biotherapeutic recombinant proteins for a range of molecules including monoclonal antibodies and Fc-fusion proteins. Regulatory requirements for the final product include the removal of host cell proteins (HCPs) to acceptable amounts (<100ppm). Recent research has begun to unravel the extent to which upstream process conditions and subsequent product recovery and purification processes impact upon the HCP profile. A number of upstream parameters, including the selection of the cell line, the culturing process (e.g. feeding regime, culture temperature), cell viability at time of harvest/culture duration and cell shear sensitivity can all influence the resulting HCP profile. Further, the molecule itself plays an important role in determining those HCPs that are retained throughout a bioprocess and HCPs can co-elute with the target product during purification. Measurement and monitoring of HCPs is usually undertaken using ELISA technology, however alternative approaches are also now emerging that complement ELISA and allow the detection, identification and monitoring of specific HCPs. Here we discuss our understanding of how the process itself influences those HCPs present throughout the production process and the challenges in their monitoring, measurement and removal.
Biotechnology and Bioengineering | 2009
N.V.L. Hayes; Christopher Mark Smales; Peter Klappa
Post‐translational limitations in the endoplasmic reticulum during recombinant monoclonal antibody production are an important factor in lowering the capacity for synthesis and secretion of correctly folded proteins. Mammalian protein disulfide isomerase (PDI) has previously been shown to have a role in the formation of disulfide bonds in immunoglobulins. Several attempts have been made to improve the rate of recombinant protein production by overexpressing PDI but the results from these studies have been inconclusive. Here we examine the effect of (a) transiently silencing PDI mRNA and (b) increasing the intracellular levels of members of the PDI family (PDI, ERp72, and PDIp) on the mRNA levels, assembly and secretion of an IgG4 isotype. Although transiently silencing PDI in NS0/2N2 cells suggests that PDI is involved in disulfide bond formation of this subclass of antibody, our results show that PDI does not control the overall IgG4 productivity. Furthermore, overexpression of members of the PDI family in a Chinese hamster ovary (CHO) cell line does not improve productivity and hence we conclude that the catalysis of disulfide bond formation is not rate limiting for IgG4 production. Biotechnol. Bioeng. 2010. 105: 770–779.
Bioengineered bugs | 2013
Catherine E.M. Hogwood; Daniel G. Bracewell; Christopher Mark Smales
During the production of recombinant protein products, such as monoclonal antibodies, manufacturers must demonstrate clearance of host cell impurities and contaminants to appropriate levels prior to use in the clinic. These include host cell DNA and RNA, product related contaminants such as aggregates, and importantly host cell proteins (HCPs). Despite the importance of HCP removal, the identity and dynamics of these proteins during cell culture and downstream processing (DSP) are largely unknown. Improvements in technologies such as SELDI-TOF mass spectrometry alongside the gold standard technique of ELISA has allowed semi-quantification of the total HCPs present. However, only recently have techniques been utilized in order to identify those HCPs present and align this with the development of approaches to monitor the dynamics of HCPs during both fermentation and downstream processing. In order to enable knowledge based decisions with regards to improving HCP clearance it is vital to identify potential problematic HCPs on a cell line and product specific basis. Understanding the HCP dynamics will in the future help provide a platform to rationally manipulate and engineer and/or select suitable recombinant CHO cell lines and downstream processing steps to limit problematic HCPs.
PLOS ONE | 2013
Jane L. Wagstaff; Rosalyn J. Masterton; Jane F. Povey; Christopher Mark Smales; Mark J. Howard
We report an NMR based approach to determine the metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture by investigating the extracellular cell culture media and intracellular metabolome of CHOK1 and CHO-S cells during culture and in response to cold-shock and subsequent recovery from hypothermic culturing. A total of 24 components were identified for CHOK1 and 29 components identified for CHO-S cell systems including the observation that CHO-S media contains 5.6 times the level of glucose of CHOK1 media at time zero. We confirm that an NMR metabolic approach provides quantitative analysis of components such as glucose and alanine with both cell lines responding in a similar manner and comparable to previously reported data. However, analysis of lactate confirms a differentiation between CHOK1 and CHO-S and that reprogramming of metabolism in response to temperature was cell line specific. The significance of our results is presented using principal component analysis (PCA) that confirms changes in metabolite profile in response to temperature and recovery. Ultimately, our approach demonstrates the capability of NMR providing real-time analysis to detect reprogramming of metabolism upon cellular perception of cold-shock/sub-physiological temperatures. This has the potential to allow manipulation of metabolites in culture supernatant to improve growth or productivity.
Biotechnology Progress | 2001
Christopher Mark Smales; Duncan S. Pepper; David C. James
Antiviral heat treatment is routinely used in the bioprocessing of therapeutic proteins as a means of reducing viral load. However, in protein formulations containing sucrose this form of bioprocessing can lead to protein modifications. Using a model protein, hen egg white lysozyme, we investigated the effects of antiviral heat treatments in the presence of sucrose on protein integrity during subsequent long‐term protein storage. Although heat treatment alone resulted in protein modification, subsequent medium‐ to long‐term storage of both lyophilized and liquid samples at room temperature or above led to further protein modifications. The majority of these modifications were due to the formation of glycation and advanced glycation end products via the reaction of reducing sugars and their autoxidation products (derived from hydrolyzed sucrose) with function groups on the protein surface. These findings have implications for the improvement of therapeutic protein bioprocessing to ensure protein product quality.