Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Mount is active.

Publication


Featured researches published by Christopher Mount.


Science | 2014

Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain

Erin M. Gibson; David Purger; Christopher Mount; Andrea K. Goldstein; Grant Lin; Lauren Wood; Ingrid Inema; Sarah Miller; Gregor Bieri; J. Bradley Zuchero; Ben A. Barres; Pamelyn Woo; Hannes Vogel; Michelle Monje

Introduction Myelin is formed by mature oligodendrocytes to facilitate fast propagation of action potentials in axons. Small changes in myelin thickness can confer substantial changes in conduction speed and may thus alter neural circuit function. The idea that active neurons may modulate myelination is supported by in vitro studies and correlations between experience and myelin microstructure, but direct in vivo evidence demonstrating that neuronal activity regulates oligodendrocyte precursor cell (OPC) proliferation, differentiation, or changes in myelin microstructure has been lacking. We use in vivo optogenetic techniques in awake, behaving mice to provide direct evidence that neuronal activity regulates changes in myelin-forming cells within an active circuit. Neuronal activity promotes OPC proliferation, oligodendrogenesis, and myelin remodeling. Optogenetic stimulation of unilateral premotor cortex layer V projection neurons in awake, behaving Thy1::ChR2 mice promotes OPC proliferation (light green cells, red EdU+ nuclei), oligodendrogenesis (newly generated, EdU-marked oligodendrocyte; dark green cell), and an increase in myelin sheath thickness (viewed in cross section, gray). Together with these adaptive myelin changes, motor performance of the correlate limb is improved during normal gait 4 weeks after premotor cortex stimulation. Rationale Demonstrating the direct effects of behaviorally relevant neuronal activity on oligodendroglial lineage cells in vivo has been a challenge because traditional methods of directly promoting neuronal activity involve placement of an electrode, and the resultant tissue injury and subsequent inflammation affects OPC dynamics. Optogenetic technology allows for in vivo control of neuronal firing with millisecond precision using light delivered at a distance from the target and, thus, avoids extensive electrode-related tissue damage. We used an optogenetic (Thy1::ChR2) mouse model in which 470-nm light delivered near the brain surface stimulates the excitatory opsin channelrhodopsin expressed by cortical layer V projection neurons. Wild-type littermate controls lacking channelrhodopsin were identically manipulated to control for effects of surgery, optical fiber placement, and light exposure. In Thy1::ChR2 mice, light stimulation delivered unilaterally to the premotor cortex elicits complex motor behavior (unidirectional ambulation). The thymidine analog 5-ethynyl-2′-deoxyuridine (EdU) was administered at the time of optogenetic stimulation to mark actively dividing cells. Animals were evaluated at various time points to examine the effects of neuronal activity on myelin-forming cells and myelin microstructure, as well as the functional consequences of neuronal activity–regulated myelin changes. Results Optogenetic stimulation of cortical layer V projection neurons resulted in robust proliferation of OPCs within the premotor circuit, from the deep layers of the premotor cortex to the subcortical projections through the corpus callosum. Four weeks later, an increase in newly generated oligodendrocytes and increased myelin sheath thickness were found within the stimulated premotor circuit. Behavioral testing revealed increased swing speed of the correlate forelimb. Pharmacological blockade of OPC differentiation prevented activity-regulated oligodendrogenesis and myelin changes, as well as the associated behavioral change. Conclusion Neuronal activity regulates OPC proliferation, differentiation, and myelin remodeling in the murine brain with accompanying changes in behavioral function. Taken together, these findings suggest that adaptive changes in myelin-forming cells represent a type of behaviorally relevant neural plasticity, raising numerous conceptual and mechanistic questions. Mechanisms regulating myelin plasticity may be important for adaptive neural function and could be leveraged for interventions in diseases of myelin. Conversely, dysregulated myelin plasticity could conceivably contribute to disease. On-Demand Activity Oligodendroglia ensheath axons in the brain with myelin, which provides the insulation that speeds up transmission of neuronal electrical impulses. The process of myelination in the human brain goes on for decades, concurrent with all manner of brain development and cognitive activity. Gibson et al. (p. 10.1126/science.1252304, published online 10 April; see the Perspective by Bechler and ffrench-Constant) used optogenetics to study myelination in response to neural activity. Electrical activity in the motor cortex of the brain of awake mice led to proliferation and differentiation of oligodendrocytes and consequently increased myelination and alterations in motor response. Optogenetic stimulation of the mouse motor cortex incites proliferation of myelin-producing cells and axonal myelination. [Also see Perspective by Bechler and ffrench-Constant] Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity–regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.


Nature | 2016

Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma

Itay Tirosh; Andrew S. Venteicher; Christine Hebert; Leah E. Escalante; Anoop P. Patel; Keren Yizhak; Jonathan M. Fisher; Christopher Rodman; Christopher Mount; Mariella G. Filbin; Cyril Neftel; Niyati Desai; Jackson Nyman; Benjamin Izar; Christina C. Luo; Joshua M. Francis; Aanand A. Patel; Maristela L. Onozato; Nicolo Riggi; Kenneth J. Livak; Dave Gennert; Rahul Satija; Brian V. Nahed; William T. Curry; Robert L. Martuza; Ravindra Mylvaganam; A. John Iafrate; Matthew P. Frosch; Todd R. Golub; Miguel Rivera

Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.


Cell | 2015

Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion

Humsa Venkatesh; Tessa Johung; Viola Caretti; Alyssa Noll; Yujie Tang; Surya Nagaraja; Erin M. Gibson; Christopher Mount; Jai S. Polepalli; Siddhartha Mitra; Pamelyn Woo; Robert C. Malenka; Hannes Vogel; Markus Bredel; Parag Mallick; Michelle Monje

Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.


Science | 2017

Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq.

Andrew S. Venteicher; Itay Tirosh; Christine Hebert; Keren Yizhak; Cyril Neftel; Mariella G. Filbin; Volker Hovestadt; Leah E. Escalante; McKenzie L. Shaw; Christopher Rodman; Shawn M. Gillespie; Danielle Dionne; Christina C. Luo; Hiranmayi Ravichandran; Ravindra Mylvaganam; Christopher Mount; Maristela L. Onozato; Brian V. Nahed; Hiroaki Wakimoto; William T. Curry; A. John Iafrate; Miguel Rivera; Matthew P. Frosch; Todd R. Golub; Priscilla K. Brastianos; Gad Getz; Anoop P. Patel; Michelle Monje; Daniel P. Cahill; Orit Rozenblatt-Rosen

Single-cell RNA sequencing identifies a common origin for specific types of human glioma brain tumors. Effects of the tumor microenvironment Glioma brain tumors that carry mutant copies of the IDH gene can be subdivided into two major classes. However, the development of and differences between these two classes are not well characterized. Venteicher et al. coupled bulk sequencing and publicly available data with single-cell RNA sequencing data on glioma patient tissue samples. They identified a common lineage program that is shared between glioma subtypes. This suggests that the observed differences between the two glioma classes originate from lineage-specific genetic changes and the tumor microenvironment. Science, this issue p. eaai8478 INTRODUCTION Tumor fitness, evolution, and resistance to therapy are governed by selection of malignant cells with specific genotypes, by expression programs related to cellular phenotypes, and by influences of the tumor microenvironment (TME). Although bulk tumor analysis can interrogate the genetic state of tumor cells with high precision, bulk expression profiles average the diverse cells within each tumor, thereby masking critical differences and providing limited insight into cancer cell programs and TME influences. Single-cell RNA sequencing (scRNA-seq) can help to address those challenges but incurs financial and logistic considerations, including the time required to accrue large cohorts of fresh tumor specimen for single-cell analysis. RATIONALE We reasoned that scRNA-seq of a limited number of representative tumors could be combined with bulk data from large cohorts to decipher differences between tumor subclasses. In this approach, bulk samples collected for large cohorts, such as from The Cancer Genome Atlas (TCGA), are first used to define the combined effects of differences in cancer cell genotypes, phenotypes, and the composition of the TME. Single-cell analysis of a limited set of representative tumors is then used to distinguish those effects. We applied this approach to understand the differences between two types of isocitrate dehydrogenase (IDH)–mutant gliomas: astrocytoma (IDH-A) and oligodendroglioma (IDH-O). IDH-A and IDH-O are distinguished by co-occurring signature genetic events and by histopathology and are thought to recapitulate distinct glial lineages. By combining 9879 scRNA-seq profiles from 10 IDH-A tumors, 4347 scRNA-seq profiles from six IDH-O tumors, and 165 TCGA bulk RNA profiles, we could decipher differences between these two tumor types at single-cell resolution. RESULTS We find that differences in bulk expression profiles between IDH-A and IDH-O are primarily explained by the impact of signature genetic events and TME composition, but not by distinct expression programs of glial lineages in the malignant cells. We infer that both IDH-A and IDH-O share the same developmental hierarchy, consisting in each case of three subpopulations of malignant cells: nonproliferating cells differentiated along the astrocytic and oligodendrocytic lineages, and proliferative undifferentiated cells that resemble neural stem/progenitor cells. By analyzing tumors of different clinical grades, we observe that higher-grade tumors present enhanced proliferation, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia programs in the TME. CONCLUSION Our approach provides a general framework to decipher differences between classes of human tumors by decoupling cancer cell genotypes, phenotypes, and the composition of the TME. The shared glial lineages and developmental hierarchies observed in IDH-A and IDH-O suggest a common progenitor for all IDH-mutant gliomas, shedding light on a long-standing debate in gliomagenesis. In contrast to the similarity in glial lineages, IDH-A and IDH-O differ significantly in their TME, and in particular in the abundance of microglia/macrophage cells. Microglia and macrophages also differ between IDH-A tumors of different grades. Our study redefines the cellular composition of human IDH-mutant gliomas, with important implications for disease management. Single-cell RNA-seq of IDH-mutant gliomas reveals tumor architecture. (Top) Human samples were dissociated and analyzed by scRNA-seq. (Bottom) IDH-O and IDH-A differ in genetics and TME but are both primarily composed of three main types of malignant cells: cycling stem-like cells and noncycling astrocyte-like and oligodendrocyte-like cells. Tumor progression is associated with increased proliferation, decreased differentiation, and increase in macrophages over microglia in the TME. Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)–mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.


Neuron | 2017

Wrapped to Adapt: Experience-Dependent Myelination

Christopher Mount; Michelle Monje

Activity of the nervous system has long been recognized as a critical modulator of brain structure and function. Influences of experience on the cytoarchitecture and functional connectivity of neurons have been appreciated since the classic work of Hubel and Wiesel (1963; Wiesel and Hubel, 1963a, 1963b). In recent years, a similar structural plasticity has come to light for the myelinated infrastructure of the nervous system. While an innate program of myelin development proceeds independently of nervous system activity, increasing evidence supports a role for activity-dependent, plastic changes in myelin-forming cells that influence myelin structure and neurological function. Accumulating evidence of complementary and likely temporally overlapping activity-independent and activity-dependent modes of myelination are beginning to crystallize in a model of myelin plasticity, with broad implications for neurological function in health and disease.


Nature Medicine | 2018

Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M + diffuse midline gliomas

Christopher Mount; Robbie G. Majzner; Shree Sundaresh; Evan Arnold; Meena Kadapakkam; Samuel Haile; Louai Labanieh; Esther Hulleman; Pamelyn Woo; Skyler P. Rietberg; Hannes Vogel; Michelle Monje; Crystal L. Mackall

Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMGs) with mutated histone H3 K27M (H3-K27M)1–5 are aggressive and universally fatal pediatric brain cancers6. Chimeric antigen receptor (CAR)-expressing T cells have mediated impressive clinical activity in B cell malignancies7–10, and recent results suggest benefit in central nervous system malignancies11–13. Here, we report that patient-derived H3-K27M-mutant glioma cell cultures exhibit uniform, high expression of the disialoganglioside GD2. Anti-GD2 CAR T cells incorporating a 4-1BBz costimulatory domain14 demonstrated robust antigen-dependent cytokine generation and killing of DMG cells in vitro. In five independent patient-derived H3-K27M+ DMG orthotopic xenograft models, systemic administration of GD2-targeted CAR T cells cleared engrafted tumors except for a small number of residual GD2lo glioma cells. To date, GD2-targeted CAR T cells have been well tolerated in clinical trials15–17. Although GD2-targeted CAR T cell administration was tolerated in the majority of mice bearing orthotopic xenografts, peritumoral neuroinflammation during the acute phase of antitumor activity resulted in hydrocephalus that was lethal in a fraction of animals. Given the precarious neuroanatomical location of midline gliomas, careful monitoring and aggressive neurointensive care management will be required for human translation. With a cautious multidisciplinary clinical approach, GD2-targeted CAR T cell therapy for H3-K27M+ diffuse gliomas of pons, thalamus and spinal cord could prove transformative for these lethal childhood cancers.Lethal pediatric tumors bearing a particular histone H3 mutation upregulate the disialoganglioside GD2, thereby making these tumors susceptible to chimeric antigen receptor T cell–based immunotherapy.


Science | 2018

Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq

Mariella G. Filbin; Itay Tirosh; Volker Hovestadt; McKenzie L. Shaw; Leah E. Escalante; Nathan Mathewson; Cyril Neftel; Nelli Frank; Kristine Pelton; Christine M. Hebert; Christine Haberler; Keren Yizhak; Johannes Gojo; Kristof Egervari; Christopher Mount; Dennis M. Bonal; Quang-Dé Nguyen; Alexander Beck; Claire Sinai; Thomas Czech; Christian Dorfer; Liliana Goumnerova; Cinzia Lavarino; Angel M. Carcaboso; Jaume Mora; Ravindra Mylvaganam; Christina C. Luo; Andreas Peyrl; Mara Popović; Amedeo A. Azizi

The cellular composition of H3K27M gliomas Diffuse midline gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) are an aggressive type of childhood cancer with few options for treatment. Filbin et al. used a single-cell sequencing approach to study the oncogenic programs, genetics, and cellular hierarchies of H3K27M-glioma. Tumors were mainly composed of cells resembling oligodendrocyte precursor cells, whereas differentiated malignant cells were a smaller fraction. In comparison with other gliomas, these cancers had distinct oncogenic programs and stem cell–like profiles that contributed to their stable tumor-propagating potential. The analysis also identified a lineage-specific marker that may be useful in developing therapies. Science, this issue p. 331 Single-cell analyses of H3K27M glioma defines a putative developmental hierarchy that differs from other gliomas. Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.


Cancer Research | 2018

Abstract PR04: GD2-directed chimeric antigen receptor T cells mediate potent antitumor effect and cure in xenograft models of diffuse intrinsic pontine glioma

Robbie G. Majzner; Christopher Mount; Shree Sundaresh; Evan Arnold; Meena Kadapakkam; Louai Labanieh; Pamelyn Woo; Michelle Monje; Crystal L. Mackall

Introduction: Diffuse intrinsic pontine glioma (DIPG) is a universally fatal pediatric brainstem tumor with a median survival of less than one year. Despite advances in the understanding of the molecular origins of DIPG, improvement in clinical outcomes has yet to materialize. To date, there has been little target exploration for immunotherapy applications in DIPG. Methods: Patient-derived DIPG cell cultures were screened for expression of more than 350 surface antigens as potential immunotherapeutic targets. The disialoganglioside GD2 was found to have the highest expression across cell cultures and was verified by IHC on post-mortem samples. Chimeric antigen receptor (CAR) T-cell therapy against this target was explored both in vitro and in vivo. Results: We found high levels of the disialoganglioside GD2 expressed on cell cultures derived from post-mortem samples of DIPG. Quantification of the number of GD2 molecules per cell demonstrated higher GD2 expression on DIPG than any other tumors, including neuroblastoma, for which GD2 targeted immunotherapy is part of the standard of care. Most cases of DIPG are caused by a mutation in Histone 3.3 (H3K27M). GD2 is highly and uniformly expressed in patient-derived H3K27M DIPG cultures, whereas H3 wild-type pediatric high-grade gliomas, including those diagnosed as DIPG, do not express significant levels of GD2. The H3K27M mutation is associated with increased levels of enzymes in the ganglioside synthesis pathway, suggesting that expression of the target antigen is driven by H3K27M-induced transcriptional dysregulation. Anti-GD2 CAR T cells with a 4-1BB costimulatory domain demonstrate remarkable preclinical activity against H3K27M DIPG. GD2 CAR T cells specifically kill DIPG cells and produce cytokines IL-2 and IFN- upon coculture with tumor. Systemic administration of anti-GD2 CAR T cells achieves potent and durable cure compared to control T cells in multiple orthotopic xenograft models of DIPG. Using a CAR fluorescent protein fusion construct, we demonstrate significant T-cell trafficking to the brainstem where the antitumor effect is mediated. Universal response was observed across multiple cohorts, and treatment-associated toxicity was transient and tolerated during the period of peak antitumor activity. Conclusion: We have previously demonstrated that antigen density drives CAR efficacy. Extremely high expression of GD2 on DIPG makes this a particularly good disease for CAR T-cell therapy. If these results are predictive of human response, CAR T cells could have a transformative impact upon DIPG outcomes. A clinical trial of second generation anti-GD2 CAR T cells in relapsed and progressive DIPG is planned. Citation Format: Robbie G. Majzner, Christopher Mount, Shree Sundaresh, Evan Arnold, Meena Kadapakkam, Louai Labanieh, Pamelyn Woo, Michelle Monje, Crystal L. Mackall. GD2-directed chimeric antigen receptor T cells mediate potent antitumor effect and cure in xenograft models of diffuse intrinsic pontine glioma [abstract]. In: Proceedings of the AACR Special Conference: Pediatric Cancer Research: From Basic Science to the Clinic; 2017 Dec 3-6; Atlanta, Georgia. Philadelphia (PA): AACR; Cancer Res 2018;78(19 Suppl):Abstract nr PR04.


Neuro-oncology | 2017

PDTM-39. GD2-DIRECTED CHIMERIC ANTIGEN RECEPTOR T CELLS AS A POTENT IMMUNOTHERAPY REGIMEN IN XENOGRAFT MODELS OF DIFFUSE INTRINSIC PONTINE GLIOMA

Christopher Mount; Robbie G. Majzner; Shree Sundaresh; Evan Arnold; Meena Kadapakkam; Michelle Monje-Deisseroth; Crystal L. Mackall


Neuro-oncology | 2018

DIPG-36. ANTI-GD2 CHIMERIC ANTIGEN RECEPTOR T CELLS AS A POTENT IMMUNOTHERAPY REGIMEN IN XENOGRAFT MODELS OF HISTONE 3 K27M MUTANT DIFFUSE MIDLINE GLIOMA

Christopher Mount; Robbie G. Majzner; Shree Sundaresh; Evan Arnold; Meena Kadapakkam; Samuel Haile; Louai Labanieh; Pamelyn Woo; Skyler P. Rietberg; Hannes Vogel; Michelle Monje; Crystal L. Mackall

Collaboration


Dive into the Christopher Mount's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge