Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher N. Hahn is active.

Publication


Featured researches published by Christopher N. Hahn.


Nature Genetics | 2011

Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia

Christopher N. Hahn; Chan Eng Chong; Catherine L. Carmichael; Ella J. Wilkins; Peter J. Brautigan; Xiaochun Li; Milena Babic; Ming Lin; Amandine Carmagnac; Young Koung Lee; Chung H. Kok; Lucia Gagliardi; Kathryn Friend; Paul G. Ekert; Carolyn M. Butcher; Anna L. Brown; Ian D. Lewis; L. Bik To; Andrew E. Timms; Jan Storek; Sarah Moore; Meryl Altree; Robert Escher; Peter Bardy; Graeme Suthers; Richard J. D'Andrea; Marshall S. Horwitz; Hamish S. Scott

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Nature Genetics | 2013

A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

Sohela Shah; Kasmintan A. Schrader; Esmé Waanders; Andrew E. Timms; Joseph Vijai; Cornelius Miething; Jeremy Wechsler; Jun Yang; James Hayes; Robert J. Klein; Jinghui Zhang; Lei Wei; Gang Wu; Michael Rusch; Panduka Nagahawatte; Jing Ma; Shann Ching Chen; Guangchun Song; Jinjun Cheng; Paul A. Meyers; Deepa Bhojwani; Suresh C. Jhanwar; P. Maslak; Martin Fleisher; Jason Littman; Lily Offit; Rohini Rau-Murthy; Megan Harlan Fleischut; Marina Corines; Rajmohan Murali

Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A (p.Gly183Ser), affecting the octapeptide domain of PAX5 that was found to segregate with disease in two unrelated kindreds with autosomal dominant B-ALL. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss harbored somatic PAX5 substitutions affecting Gly183. Functional and gene expression analysis of the PAX5 mutation demonstrated that it had significantly reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B cell ALL and implicate PAX5 in a new syndrome of susceptibility to pre-B cell neoplasia.


Journal of Biological Chemistry | 1996

Transcriptional Synergism between Vitamin D-responsive Elements in the Rat 25-Hydroxyvitamin D3 24-Hydroxylase (CYP24) Promoter

David M. Kerry; Prem P. Dwivedi; Christopher N. Hahn; Howard A. Morris; John L. Omdahl; Brian K. May

Transcription of the CYP24 gene is induced by 1,25-(OH)2D3 through a vitamin D receptor-dependent process. The functional activities of three possible vitamin D response elements (VDREs), located on the antisense strand of the rat CYP24 promoter, were investigated by transient expression of native and mutant promoter constructs in COS-1, JTC-12, and ROS 17/2.8 cells. A putative VDRE with a half-site spacing of 6 base pairs at −249/−232 (VDRE-3) did not contribute to 1,25-(OH)2D3 induced expression in the native promoter, although activity has been reported when the element was fused to the heterologous thymidine kinase promoter. Two VDREs with half-site spacings of 3 base pairs at −150/−136 and −258/−244 (VDRE-1 and VDRE-2, respectively), showed transcriptional synergism in COS-1 cells when treated with 1,25-(OH)2D3 (10−7 to 10−11 M). The contribution of both VDREs was hormone-concentration dependent from 10−10 to 10−12 M, with VDRE-1 demonstrating greatest sensitivity to 1,25-(OH)2D3. Transactivation by VDRE-1 was always greater than VDRE-2, but the converse was observed for the binding of vitamin D receptor-retinoid X receptor complex by each VDRE in gel mobility shift assays. The synergy observed between VDRE-1 and VDRE-2 may have important implications in cellular responses to different circulating levels of 1,25-(OH)2D3.


Blood | 2008

Basal and angiopoietin-1–mediated endothelial permeability is regulated by sphingosine kinase-1

Xiaochun Li; Milena Stankovic; Claudine S. Bonder; Christopher N. Hahn; Michelle Parsons; Stuart M. Pitson; Pu Xia; Richard L. Proia; Mathew A. Vadas; Jennifer R. Gamble

Endothelial cells (ECs) regulate the barrier function of blood vessels. Here we show that basal and angiopoietin-1 (Ang-1)-regulated control of EC permeability is mediated by 2 different functional states of sphingosine kinase-1 (SK-1). Mice depleted of SK-1 have increased vascular leakiness, whereas mice transgenic for SK-1 in ECs show attenuation of leakiness. Furthermore, Ang-1 rapidly and transiently stimulates SK-1 activity and phosphorylation, and induces an increase in intracellular sphingosine-1-phosphate (S1P) concentration. Overexpression of SK-1 resulted in inhibition of permeability similar to that seen for Ang-1, whereas knockdown of SK-1 by small interfering RNA blocked Ang-1-mediated inhibition of permeability. Transfection with SKS225A, a nonphosphorylatable mutant of SK-1, inhibited basal leakiness, and both SKS225A and a dominant-negative SK-1 mutant removed the capacity of Ang-1 to inhibit permeability. These effects were independent of extracellular S1P as knockdown or inhibition of S1P1, S1P2, or S1P3, did not affect the Ang-1 response. Thus, SK-1 levels in ECs powerfully regulate basal permeability in vitro and in vivo. In addition, the Ang-1-induced inhibition of leakiness is mediated through activation of SK-1, defining a new signaling pathway in the Ang-1 regulation of permeability.


International Journal of Cancer | 2006

Phenoxodiol, an experimental anticancer drug, shows potent antiangiogenic properties in addition to its antitumour effects

Jennifer R. Gamble; Pu Xia; Christopher N. Hahn; Jenny Drew; Chris Drogemuller; David A. Brown; Mathew A. Vadas

Phenoxodiol (2H‐1‐benzopyran‐7‐0,1, 3‐[4‐hydroxyphenyl], PXD) is a synthetic analogue of the naturally‐occurring plant isoflavone and anticancer agent, genistein. PXD directly induces mitotic arrest and apoptosis in most cancer cells and is currently undergoing clinical trials, as a chemotherapeutic in ovarian and prostate cancers. We show here that PXD also exhibits potent antiangiogenic properties. Thus, it inhibited endothelial cell proliferation, migration and capillary tube formation and inhibited expression of the matrix metalloproteinase MMP‐2, a major matrix degrading enzyme. Importantly, we demonstrate that PXD is functional in vivo since it inhibited the extent of capillary tube invasion in an in vivo model of angiogenesis. We show that phenoxodiol inhibits hallmarks of endothelial cell activation, namely TNF or IL‐1 induced E‐selectin and VCAM‐1 expression and IL‐8 secretion. However, PXD had no effect on unstimulated endothelial cells. We also describe that PXD inhibits the lipid kinase sphingosine kinase, which recently has been implicated in endothelial cell activation and angiogenesis as well as oncogenesis. Thus, our results suggest that PXD may be an effective anticancer drug targeting the two drivers of tumour growth – the proliferation of the tumour cells themselves and the angiogenic and inflammatory stimulation of the vasculature.


Blood | 2016

Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies

Maya Lewinsohn; Anna L. Brown; Luke M. Weinel; Connie Phung; George Rafidi; Ming K. Lee; Andreas W. Schreiber; Jinghua Feng; Milena Babic; Chan Eng Chong; Young Kyung Lee; Agnes S. M. Yong; Graeme Suthers; Nicola Poplawski; Meryl Altree; Kerry Phillips; Louise Jaensch; Miriam Fine; Richard J. D'Andrea; Ian D. Lewis; Bruno C. Medeiros; Daniel A. Pollyea; Mary Claire King; Tom Walsh; Siobán B. Keel; Akiko Shimamura; Lucy A. Godley; Christopher N. Hahn; Jane E. Churpek; Hamish S. Scott

Recently our group and others have identified DDX41 mutations both as germ line and acquired somatic mutations in families with multiple cases of late onset myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML), suggesting that DDX41 acts as a tumor suppressor. To determine whether novel DDX41 mutations could be identified in families with additional types of hematologic malignancies, our group screened two cohorts of families with a diverse range of hematologic malignancy subtypes. Among 289 families, we identified nine (3%) with DDX41 mutations. As previously observed, MDS and AML were the most common malignancies, often of the erythroblastic subtype, and 1 family displayed early-onset follicular lymphoma. Five novel mutations were identified, including missense mutations within important functional domains and start-loss and splicing mutations predicted to result in truncated proteins. We also show that most asymptomatic mutation carriers have normal blood counts until malignancy develops. This study expands both the mutation and phenotypic spectra observed in families with germ line DDX41 mutations. With an increasing number of both inherited and acquired mutations in this gene being identified, further study of how DDX41 disruption leads to hematologic malignancies is critical.


Journal of Clinical Investigation | 2015

GATA2 is required for lymphatic vessel valve development and maintenance

Jan Kazenwadel; Kelly L. Betterman; Chan-Eng Chong; Philippa H. Stokes; Young Koung Lee; Genevieve A. Secker; Yan Agalarov; Cansaran Saygili Demir; David Lawrence; Drew L. Sutton; Sébastien Tabruyn; Naoyuki Miura; Marjo Salminen; Tatiana V. Petrova; Jacqueline M. Matthews; Christopher N. Hahn; Hamish S. Scott; Natasha L. Harvey

Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.


The Journal of Clinical Endocrinology and Metabolism | 2014

ARMC5 Mutations Are Common in Familial Bilateral Macronodular Adrenal Hyperplasia

Lucia Gagliardi; Andreas W. Schreiber; Christopher N. Hahn; Jinghua Feng; Treena Cranston; Hannah Boon; Cheri Hotu; Bergithe E. Oftedal; Richard Cutfield; David L. Adelson; Wilton J. Braund; Richard D. Gordon; D. Aled Rees; Ashley B. Grossman; David J. Torpy; Hamish S. Scott

CONTEXT Bilateral macronodular adrenal hyperplasia (BMAH) is a rare form of adrenal Cushings syndrome. Familial cases have been reported, but at the time we conducted this study, the genetic basis of BMAH was unknown. Recently, germline variants of armadillo repeat containing 5 (ARMC5) in patients with isolated BMAH and somatic, second-hit mutations in tumor nodules, were identified. OBJECTIVE Our objective was to identify the genetic basis of familial BMAH. DESIGN We performed whole exome capture and sequencing of 2 affected individuals from each of 4 BMAH families (BMAH-01, BMAH-02, BMAH-03, and BMAH-05). Based on clinical evaluation, there were 7, 3, 3, and 4 affected individuals in these families, respectively. Sanger sequencing of ARMC5 was performed in 1 other BMAH kindred, BMAH-06. RESULTS Exome sequencing identified novel variants Chr16:g.31477540, c.2139delT, p.(Thr715Leufs*1) (BMAH-02) and Chr16:g.31473811, c.943C→T, p.(Arg315Trp) (BMAH-03) in ARMC5 (GRch37/hg19), validated by Sanger sequencing. BMAH-01 had a recently reported mutation Chr16:g.31476121, c.1777C→T, p.(Arg593Trp). Sanger sequencing of ARMC5 in BMAH-06 identified a previously reported mutation, Chr16:g. 31473688; c.799C→T, p.(Arg267*). The genetic basis of BMAH in BMAH-05 was not identified. CONCLUSIONS Our studies have detected ARMC5 mutations in 4 of 5 BMAH families tested, confirming that these mutations are a frequent cause of BMAH. Two of the 4 families had novel mutations, indicating allelic heterogeneity. Preclinical evaluation did not predict mutation status. The ARMC5-negative family had unusual prominent hyperaldosteronism. Further studies are needed to determine the penetrance of BMAH in ARMC5 mutation-positive relatives of affected patients, the practical utility of genetic screening and genotype-phenotype correlations.


Nature Genetics | 2012

Spliceosome mutations in hematopoietic malignancies

Christopher N. Hahn; Hamish S. Scott

Recent studies, including two in this issue, report heterozygous missense mutations in the U2AF1 and SF3B1 genes that encode spliceosome subunits. U2AF1 is frequently mutated in myeloid hematopoietic malignancies, especially in myelodysplastic syndrome (MDS), and SF3B1 is frequently mutated in both MDS and chronic lymphocytic leukemia (CLL).


BMC Genomics | 2011

Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

King Hwa Ling; Peter J. Brautigan; Christopher N. Hahn; Tasman Daish; John R. Rayner; Pike See Cheah; Joy M. Raison; Sandra Piltz; Jeffrey R. Mann; Deidre M. Mattiske; Paul Q. Thomas; David L. Adelson; Hamish S. Scott

BackgroundMicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain.ResultsWe identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099.ConclusionsWe have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.

Collaboration


Dive into the Christopher N. Hahn's collaboration.

Top Co-Authors

Avatar

Hamish S. Scott

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Milena Babic

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna L. Brown

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jinghua Feng

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Sarah Moore

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaochun Li

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Ian D. Lewis

Royal Adelaide Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge