Christopher N. Kaiser-Bunbury
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher N. Kaiser-Bunbury.
Advances in Ecological Research | 2012
Melanie Hagen; W. Daniel Kissling; Claus Rasmussen; Marcus A. M. de Aguiar; Lee E. Brown; Daniel W. Carstensen; Isabel Alves-dos-Santos; Yoko L. Dupont; Francois Edwards; Julieta Genini; Paulo R. Guimarães; Gareth B. Jenkins; Pedro Jordano; Christopher N. Kaiser-Bunbury; Mark E. Ledger; Kate P. Maia; Flavia Maria Darcie Marquitti; Órla B. McLaughlin; L. Patrícia C. Morellato; Eoin J. O'Gorman; Kristian Trøjelsgaard; Jason M. Tylianakis; Mariana Morais Vidal; Guy Woodward; Jens M. Olesen
Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales. There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation. Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and super-generalists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.
Current Biology | 2012
Matthias Schleuning; Jochen Fründ; Alexandra-Maria Klein; Stefan Abrahamczyk; Ruben Alarcón; Matthias Albrecht; Georg K.S. Andersson; Simone Bazarian; Katrin Böhning-Gaese; Riccardo Bommarco; Bo Dalsgaard; D. Matthias Dehling; Ariella Gotlieb; Melanie Hagen; Thomas Hickler; Andrea Holzschuh; Christopher N. Kaiser-Bunbury; Holger Kreft; Rebecca J. Morris; Brody Sandel; William J. Sutherland; Jens-Christian Svenning; Teja Tscharntke; Stella Watts; Christiane N. Weiner; Michael Werner; Neal M. Williams; Camilla Winqvist; Carsten F. Dormann; Nico Blüthgen
Species-rich tropical communities are expected to be more specialized than their temperate counterparts. Several studies have reported increasing biotic specialization toward the tropics, whereas others have not found latitudinal trends once accounting for sampling bias or differences in plant diversity. Thus, the direction of the latitudinal specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers to low plant diversity. This could explain why the latitudinal specialization gradient is reversed relative to the latitudinal diversity gradient. Low mutualistic network specialization in the tropics suggests higher tolerance against extinctions in tropical than in temperate communities.
Ecology Letters | 2014
Luísa G. Carvalheiro; Jacobus C. Biesmeijer; Gita Benadi; Jochen Fründ; Martina Stang; Ignasi Bartomeus; Christopher N. Kaiser-Bunbury; Mathilde Baude; Sofia I. F. Gomes; Vincent Merckx; Katherine C. R. Baldock; Andrew T. D. Bennett; Ruth Boada; Riccardo Bommarco; Ralph V. Cartar; Natacha P. Chacoff; Juliana Dänhardt; Lynn V. Dicks; Carsten F. Dormann; Johan Ekroos; Kate S. E. Henson; Andrea Holzschuh; Robert R. Junker; Martha Lopezaraiza-Mikel; Jane Memmott; Ana Montero-Castaño; Isabel L. Nelson; Theodora Petanidou; Eileen F. Power; Maj Rundlöf
Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each others pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.
Frontiers in Ecology and the Environment | 2014
Christoph Kueffer; Christopher N. Kaiser-Bunbury
We introduce a framework – based on experiences from oceanic islands – for conserving biodiversity in the Anthropocene. In an increasingly human-dominated world, the context for conservation-oriented action is extremely variable, attributable to three largely independent factors: the degree of anthropogenic change, the importance of deliberate versus inadvertent human influence on ecosystems, and land-use priorities. Given this variability, we discuss the need to integrate four strategies, often considered incompatible, for safeguarding biodiversity: maintaining relicts of historical biodiversity through intensive and continuous management; creating artificial in situ, inter situ, and ex situ conservation settings that are resilient to anthropogenic change; co-opting novel ecosystems and associated “opportunistic biodiversity” as the wildlands of the future; and promoting biodiversity in cultural landscapes by adapting economic activities.
Aob Plants | 2015
Christopher N. Kaiser-Bunbury; Nico Blüthgen
Ecological networks are a useful tool to study the complexity of biotic interactions at a community level. We introduce a framework for network analysis to be harnessed to advance biodiversity conservation by using plant–pollinator networks and islands as model systems. Conservation practitioners require indicators to assess management effectiveness and validate overall conservation goals. We propose the use of several network metrics that indicate human-induced changes to plant-pollinator communities, and illustrate an implementation pathway to successfully embed a network approach in biodiversity conservation. We list potential obstacles to the framework, highlight the shortfall in experimental network data, and discuss solutions.
Nature | 2017
Christopher N. Kaiser-Bunbury; James Mougal; Andrew E. Whittington; Terence Valentin; Ronny Gabriel; Jens M. Olesen; Nico Blüthgen
Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant–pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management.
Molecular Ecology | 2012
Aline Finger; Chris J. Kettle; Christopher N. Kaiser-Bunbury; Terence Valentin; James Mougal; Jaboury Ghazoul
Habitat fragmentation and changed land use have seriously reduced population size in many tropical forest tree species. Formerly widespread species with limited gene flow may be particularly vulnerable to the negative genetic effects of forest fragmentation and small population size. Vateriopsis seychellarum (Dipterocarpaceae) is a formerly widespread canopy tree of the Seychelles, but is now reduced to 132 adult individuals distributed in eleven sites. Using ten microsatellite loci, a genetic inventory of all adult trees and a sample of 317 progeny, we demonstrate that despite its restricted range, overall genetic diversity was relatively high (HE: 0.56). The juvenile cohort, however, had significantly lower allelic richness (adults RS: 3.91; juveniles RS: 2.83) and observed heterozygosity than adult trees (adults HO: 0.62; juveniles HO: 0.48). Rare alleles were fewer and kinship between individuals was stronger in juveniles. Significant fine‐scale spatial genetic structure was observed in remnant adults, and parentage analysis indicated that more than 90% of sampled progeny disperse <25 m and pollen dispersed <50 m. The molecular data confirmed that two populations were derived entirely from self‐fertilized offspring from a single surviving mother tree. These populations produce viable offspring. Despite this extreme genetic bottleneck, self‐compatibility may provide V. seychellarum with some resistance to the genetic consequences of habitat fragmentation, at least in the short term. We discuss our findings in the context of other rare and threatened dipterocarp species which are vulnerable to miss‐management of genetic resources and population fragmentation.
Molecular Ecology | 2011
Aline Finger; Chris J. Kettle; Christopher N. Kaiser-Bunbury; Terence Valentin; D. Doudee; D. Matatiken; Jaboury Ghazoul
Rare plant species are vulnerable to genetic erosion and inbreeding associated with small population size and isolation due to increasing habitat fragmentation. The degree to which these problems undermine population viability remains debated. We explore genetic and reproductive processes in the critically endangered long‐lived tropical tree Medusagyne oppositifolia, an endemic to the Seychelles with a naturally patchy distribution. This species is failing to recruit in three of its four populations. We evaluate whether recruitment failure is linked to genetic problems associated with fragmentation, and if genetic rescue can mitigate such problems. Medusagyne oppositifolia comprises 90 extant trees in four populations, with only the largest (78 trees) having successful recruitment. Using 10 microsatellite loci, we demonstrated that genetic diversity is high (HE: 0.48–0.63; HO: 0.56–0.78) in three populations, with only the smallest population having relatively low diversity (HE: 0.26 and HO: 0.30). All populations have unique alleles, high genetic differentiation, and significant within population structure. Pollen and seed dispersal distances were mostly less than 100 m. Individuals in small populations were more related than individuals in the large population, thus inbreeding might explain recruitment failure in small populations. Indeed, inter‐population pollination crosses from the large donor population to a small recipient population resulted in higher reproductive success relative to within‐population crosses. Our study highlights the importance of maintaining gene flow between populations even in species that have naturally patchy distributions. We demonstrate the potential for genetic and ecological rescue to support conservation of plant species with limited gene flow.
Ecology | 2014
Christopher N. Kaiser-Bunbury; Diego P. Vázquez; Martina Stang; Jaboury Ghazoul
Identifying the determinants of biological interactions in mutualistic networks is key to understanding the rules that govern the organization of biodiversity. We used structural equation modeling and dissimilarities in nine ecological variables to investigate community processes underlying the turnover of species and their interaction frequencies (interaction pattern) among highly resolved plant–pollinator networks. Floral and pollinator community composition, i.e., species identities and their abundances, were strong determinants of the microstructure of pairwise interactions among the networks, explaining almost 69% of their variation. Flower and pollinator traits were directly related to interaction patterns, but were partly masked in the model by shared variance with community composition. Time of year and geographic location, floral and pollinator abundances independent of species identity, and relative abundance of exotic flowers had indirect and relatively weak effects on interaction patterns. Our...
Naturwissenschaften | 2009
Christopher N. Kaiser-Bunbury; Christine B. Müller
In generalised pollination systems, the presence of alien plant species may change the foraging behaviour of pollinators on native plant species, which could result in reduced reproductive success of native plant species. We tested this idea of indirect interactions on a small spatial and temporal scale in a field study in Mauritius, where the invasive strawberry guava, Psidium cattleianum, provides additional floral resources for insect pollinators. We predicted that the presence of flowering guava would indirectly and negatively affect the reproductive success of the endemic plant Bertiera zaluzania, which has similar flowers, by diverting shared pollinators. We removed P. cattleianum flowers within a 5-m radius from around half the B. zaluzania target plants (treatment) and left P. cattleianum flowers intact around the other half (control). By far, the most abundant and shared pollinator was the introduced honey bee, Apis mellifera, but its visitation rates to treatment and control plants were similar. Likewise, fruit and seed set and fruit size and weight of B. zaluzania were not influenced by the presence of P. cattleianum flowers. Although other studies have shown small-scale effects of alien plant species on neighbouring natives, we found no evidence for such negative indirect interactions in our system. The dominance of introduced, established A. mellifera indicates their replacement of native insect flower visitors and their function as pollinators of native plant species. However, the pollination effectiveness of A. mellifera in comparison to native pollinators is unknown.