Christopher P. Guise
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher P. Guise.
Molecular Cancer Therapeutics | 2012
Fanying Meng; James W. Evans; Deepthi Bhupathi; Monica Banica; Leslie Lan; Gustavo Lorente; Jian-Xin Duan; Xiaohong Cai; Alexandra M. Mowday; Christopher P. Guise; Andrej Maroz; Robert F. Anderson; Adam V. Patterson; Gregory C. Stachelek; Peter M. Glazer; Mark D. Matteucci; Charles P. Hart
TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) of bromo-isophosphoramide mustard currently undergoing clinical evaluation. Here, we describe broad-spectrum activity, hypoxia-selective activation, and mechanism of action of TH-302. The concentration and time dependence of TH-302 activation was examined as a function of oxygen concentration, with reference to the prototypic HAP tirapazamine, and showed superior oxygen inhibition of cytotoxicity and much improved dose potency relative to tirapazamine. Enhanced TH-302 cytotoxicity under hypoxia was observed across 32 human cancer cell lines. One-electron reductive enzyme dependence was confirmed using cells overexpressing human NADPH:cytochrome P450 oxidoreductase and radiolytic reduction established the single-electron stoichiometry of TH-302 fragmentation (activation). Examining downstream effects of TH-302 activity, we observed hypoxia-dependent induction of γH2AX phosphorylation, DNA cross-linking, and cell-cycle arrest. We used Chinese hamster ovary cell–based DNA repair mutant cell lines and established that lines deficient in homology-dependent repair, but not lines deficient in base excision, nucleotide excision, or nonhomologous end-joining repair, exhibited marked sensitivity to TH-302 under hypoxia. Consistent with this finding, enhanced sensitivity to TH-302 was also observed in lines deficient in BRCA1, BRCA2, and FANCA. Finally, we characterized TH-302 activity in the three-dimensional tumor spheroid and multicellular layer models. TH-302 showed much enhanced potency in H460 spheroids compared with H460 monolayer cells under normoxia. Multicellular layers composed of mixtures of parental HCT116 cells and HCT116 cells engineered to express an oxygen-insensitive bacterial nitroreductase showed that TH-302 exhibits a significant bystander effect. Mol Cancer Ther; 11(3); 740–51. ©2011 AACR.
Cancer Research | 2010
Christopher P. Guise; Maria Abbattista; Rachelle S. Singleton; Samuel D. Holford; Joanna Connolly; Gabi U. Dachs; Stephen B. Fox; Robert Pollock; Justin Harvey; Parry Guilford; Fernando Donate; William R. Wilson; Adam V. Patterson
PR-104, currently in phase II clinical trials, is a phosphate ester pre-prodrug which is converted in vivo to its cognate alcohol, PR-104A, a prodrug designed to exploit tumor hypoxia. Bioactivation occurs via one-electron reduction to DNA crosslinking metabolites in the absence of oxygen. However, certain tumor cell lines activate PR-104A in the presence of oxygen, suggesting the existence of an aerobic nitroreductase. Microarray analysis identified a cluster of five aldo-keto reductase (AKR) family members whose expressions correlated with aerobic metabolism of PR-104A. Plasmid-based expression of candidate genes identified aldo-keto reductase 1C3 as a novel nitroreductase. AKR1C3 protein was detected by Western blot in 7 of 23 cell lines and correlated with oxic PR-104A metabolism, an activity which could be partially suppressed by Nrf2 RNAi knockdown (or induced by Keap1 RNAi), indicating regulation by the ARE pathway. AKR1C3 was unable to sensitize cells to 10 other bioreductive prodrugs and was associated with single-agent PR-104 activity across a panel of 9 human tumor xenograft models. Overexpression in two AKR1C3-negative tumor xenograft models strongly enhanced PR-104 antitumor activity. A population level survey of AKR1C3 expression in 2,490 individual cases across 19 cancer types using tissue microarrays revealed marked upregulation of AKR1C3 in a subset including hepatocellular, bladder, renal, gastric, and non-small cell lung carcinoma. A survey of normal tissue AKR1C3 expression suggests the potential for tumor-selective PR-104A activation by this mechanism. These findings have significant implications for the clinical development of PR-104.
Clinical and Experimental Pharmacology and Physiology | 2004
Peter F. Searle; Ming-Jen Chen; Longqin Hu; Paul R. Race; Andrew L. Lovering; Jane I. Grove; Christopher P. Guise; Mansooreh Jaberipour; Nicholas D. James; Vivien Mautner; Lawrence S. Young; David Kerr; Andrew Mountain; Scott A. White; Eva I. Hyde
1. The prodrug CB1954 (5‐(aziridin‐1‐yl)‐2,4‐dinitrobenzamide) is activated by Escherichia coli nitroreductase (NTR) to a potent DNA‐crosslinking agent.
Chinese Journal of Cancer | 2014
Christopher P. Guise; Alexandra M. Mowday; Amir Ashoorzadeh; Ran Yuan; Wanhua Lin; Donghai Wu; Jeff B. Smaill; Adam V. Patterson; Ke Ding
Hypoxia, a state of low oxygen, is a common feature of solid tumors and is associated with disease progression as well as resistance to radiotherapy and certain chemotherapeutic drugs. Hypoxic regions in tumors, therefore, represent attractive targets for cancer therapy. To date, five distinct classes of bioreactive prodrugs have been developed to target hypoxic cells in solid tumors. These hypoxia-activated prodrugs, including nitro compounds, N-oxides, quinones, and metal complexes, generally share a common mechanism of activation whereby they are reduced by intracellular oxidoreductases in an oxygen-sensitive manner to form cytotoxins. Several examples including PR-104, TH-302, and EO9 are currently undergoing phase II and phase III clinical evaluation. In this review, we discuss the nature of tumor hypoxia as a therapeutic target, focusing on the development of bioreductive prodrugs. We also describe the current knowledge of how each prodrug class is activated and detail the clinical progress of leading examples.
Cancer Research | 2009
Rachelle S. Singleton; Christopher P. Guise; Dianne M. Ferry; Susan M. Pullen; Mary Jo Dorie; J. Martin Brown; Adam V. Patterson; William R. Wilson
PR-104, currently in clinical trial, is converted systemically to the dinitrobenzamide nitrogen mustard prodrug PR-104A, which is reduced selectively in hypoxic cells to cytotoxic hydroxylamine (PR-104H) and amine (PR-104M) metabolites. Here, we evaluate the roles of this reductive metabolism, and DNA interstrand cross-links (ICL), in the hypoxic and aerobic cytotoxicity of PR-104. Using a panel of 9 human tumor cell lines, cytotoxicity was determined by clonogenic assay after a 2-hour aerobic or hypoxic exposure to PR-104A. PR-104H and PR-104M were determined by high performance liquid chromatography/mass spectrometry, and ICL with the alkaline comet assay. Under hypoxia, the relationship between ICL and cell killing was similar between cell lines. Under aerobic conditions, there was a similar relationship between ICL and cytotoxicity, except in lines with very low rates of aerobic reduction of PR-104A (A2780, C33A, H1299), which showed an ICL-independent mechanism of PR-104A cytotoxicity. Despite this, in xenografts from the same lines, the frequency of PR-104-induced ICL correlated with clonogenic cell killing (r(2) = 0.747) with greatest activity in the fast aerobic metabolizers. In addition, changing levels of hypoxia in SiHa tumors modified both ICL frequency and tumor growth delay in parallel. We conclude that both aerobic and hypoxic nitroreduction of PR-104A contribute to the monotherapy antitumor activity of PR-104 in human tumor xenografts, and that ICL are responsible for its antitumor activity and represent a broadly applicable biomarker for tumor cell killing by this novel prodrug.
Molecular Pharmacology | 2012
Christopher P. Guise; Maria Abbattista; Smitha R. Tipparaju; Neil K. Lambie; Jiechuang Su; Dan Li; William R. Wilson; Gabi U. Dachs; Adam V. Patterson
The clinical agent PR-104 is converted systemically to PR-104A, a nitrogen mustard prodrug designed to target tumor hypoxia. Reductive activation of PR-104A is initiated by one-electron oxidoreductases in a process reversed by oxygen. The identity of these oxidoreductases is unknown, with the exception of cytochrome P450 reductase (POR). To identify other hypoxia-selective PR-104A reductases, nine candidate oxidoreductases were expressed in HCT116 cells. Increased PR-104A-cytotoxicity was observed in cells expressing methionine synthase reductase (MTRR), novel diflavin oxidoreductase 1 (NDOR1), and inducible nitric-oxide synthase (NOS2A), in addition to POR. Plasmid-based expression of these diflavin oxidoreductases also enhanced bioreductive metabolism of PR-104A in an anoxia-specific manner. Diflavin oxidoreductase-dependent PR-104A metabolism was suppressed >90% by pan-flavoenzyme inhibition with diphenyliodonium chloride. Antibodies were used to quantify endogenous POR, MTRR, NDOR1, and NOS2A expression in 23 human tumor cell lines; however, only POR protein was detectable and its expression correlated with anoxic PR-104A reduction (r2 = 0.712). An anti-POR monoclonal antibody was used to probe expression using human tissue microarrays; 13 of 19 cancer types expressed detectable POR with 21% of cores (185 of 874) staining positive; this heterogeneity suggests that POR is a useful biomarker for PR-104A activation. Immunostaining for carbonic anhydrase 9 (CAIX), reportedly an endogenous marker of hypoxia, revealed only moderate coexpression (9.6%) of both CAIX and POR across a subset of five cancer types.
Biochemical Pharmacology | 2012
P.M. Swe; Janine N. Copp; Laura K. Green; Christopher P. Guise; Alexandra M. Mowday; Jeff B. Smaill; Adam V. Patterson; David F. Ackerley
Phase I/II cancer gene therapy trials of the Escherichia coli nitroreductase NfsB in partnership with the prodrug CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide] have indicated that CB1954 toxicity is dose-limiting at concentrations far below the enzyme K(M). Here we report that the flavin reductase FRase I from Vibrio fischeri is also a CB1954 nitroreductase, which has a substantially lower apparent K(M) than E. coli NfsB. To enhance the activity of FRase I with CB1954 we used targeted mutagenesis and an E. coli SOS reporter strain to engineer single- and multi-residue variants that possess a substantially reduced apparent K(M) and an increased k(cat)/K(M) relative to the wild type enzyme. In a bacteria-delivered model for enzyme prodrug therapy, the engineered FRase I variants were able to kill human colon carcinoma (HCT-116) cells at significantly lower CB1954 concentrations than wild type FRase I or E. coli NfsB.
Frontiers in Oncology | 2013
Annika Foehrenbacher; Kashyap Patel; Maria Abbattista; Christopher P. Guise; Timothy W. Secomb; William R. Wilson; Kevin O. Hicks
Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization.
Biochemical Pharmacology | 2013
Gareth A. Prosser; Janine N. Copp; Alexandra M. Mowday; Christopher P. Guise; Sophie P. Syddall; Elsie M. Williams; Claire N. Horvat; Pearl M. Swe; Amir Ashoorzadeh; William A. Denny; Jeff B. Smaill; Adam V. Patterson; David F. Ackerley
Two potentially complementary approaches to improve the anti-cancer strategy gene-directed enzyme prodrug therapy (GDEPT) are discovery of more efficient prodrug-activating enzymes, and development of more effective prodrugs. Here we demonstrate the utility of a flexible screening system based on the Escherichia coli SOS response to evaluate novel nitroreductase enzymes and prodrugs in concert. To achieve this, a library of 47 candidate genes representing 11 different oxidoreductase families was created and screened to identify the most efficient activators of two different nitroaromatic prodrugs, CB1954 and PR-104A. The most catalytically efficient nitroreductases were found in the NfsA and NfsB enzyme families, with NfsA homologues generally more active than NfsB. Some members of the AzoR, NemA and MdaB families also exhibited low-level activity with one or both prodrugs. The results of SOS screening in our optimised E. coli reporter strain SOS-R2 were generally predictive of the ability of nitroreductase candidates to sensitise E. coli to CB1954, and of the kcat/Km for each prodrug substrate at a purified protein level. However, we also found that not all nitroreductases express stably in human (HCT-116 colon carcinoma) cells, and that activity at a purified protein level did not necessarily predict activity in stably transfected HCT-116. These results highlight a need for all enzyme-prodrug partners for GDEPT to be assessed in the specific context of the vector and cell line that they are intended to target. Nonetheless, our oxidoreductase library and optimised screens provide valuable tools to identify preferred nitroreductase-prodrug combinations to advance to preclinical evaluation.
Cancer Chemotherapy and Pharmacology | 2011
Yongchuan Gu; Christopher P. Guise; Kashyap Patel; Maria Abbattista; Jie Lie; Xueying Sun; Graham J. Atwell; Maruta Boyd; Adam V. Patterson; William R. Wilson
PurposePR-104, a bioreductive prodrug in clinical trial, is a phosphate ester which is rapidly metabolized to the corresponding alcohol PR-104A. This dinitrobenzamide mustard is activated by reduction to hydroxylamine (PR-104H) and amine (PR-104M) metabolites selectively in hypoxic cells, and also independently of hypoxia by aldo-keto reductase (AKR) 1C3 in some tumors. Here, we evaluate reductive metabolism of PR-104A in mice and its significance for host toxicity.MethodsThe pharmacokinetics of PR-104, PR-104A and its reduced metabolites were investigated in plasma and tissues of mice (with and without SiHa or H460 tumor xenografts) and effects of potential oxidoreductase inhibitors were evaluated.ResultsPharmacokinetic studies identified extensive non-tumor reduction of PR-104A to the 5-amine PR-104H (identity of which was confirmed by chemical synthesis), especially in liver. However, high concentrations of PR-104H in tumors that suggested intra-tumor activation is also significant. The tissue distribution of PR-104M/H was broadly consistent with the target organ toxicities of PR-104 (bone marrow, intestines and liver). Surprisingly, hepatic nitroreduction was not enhanced when the liver was made more hypoxic by hepatic artery ligation or breathing of 10% oxygen. A screen of non-steroidal anti-inflammatory drugs identified naproxen as an effective AKR1C3 inhibitor in human tumor cell cultures and xenografts, suggesting its potential use to ameliorate PR-104 toxicity in patients. However, neither naproxen nor the pan-CYP inhibitor 1-aminobenzotriazole inhibited normal tissue reduction of PR-104A in mice.ConclusionsPR-104 is extensively reduced in mouse tissues, apparently via oxygen-independent two-electron reduction, with a tissue distribution that broadly reflects toxicity.