Christopher P. McNary
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher P. McNary.
Physical Chemistry Chemical Physics | 2015
Rebecca A. Coates; Christopher P. McNary; Georgia C. Boles; Giel Berden; Jos Oomens
Structural characterization of gas-phase ions of cysteine (Cys) and cysteine methyl ester (CysOMe) complexed to zinc and cadmium is investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy using a free electron laser in combination with density functional theory calculations. IRMPD spectra are measured for [Zn(Cys-H)](+), [Cd(Cys-H)](+), [Zn(CysOMe-H)](+), [Cd(CysOMe-H)](+) and CdCl(+)(CysOMe) and are accompanied by quantum mechanical calculations of the predicted linear absorption spectra at the B3LYP/6-311+G(d,p) (Zn(2+) complexes) and B3LYP/def2TZVP levels (Cd(2+) complexes). On the basis of these experiments and calculations, the conformation that best reproduces the IRMPD spectra for the complexes of the deprotonated amino acids, [M(Cys-H)](+) and [M(CysOMe-H)](+), is a charge-solvated (CS) tridentate structure where the metal dication binds to the amine and carbonyl groups of the amino acid backbone and the deprotonated sulfur atom of the side chain, [N,CO,S(-)]. The intact amino acid complex, CdCl(+)(CysOMe) binds in the equivalent motif [N,CO,S]. These binding motifs are in agreement with the predicted ground structures of these complexes at the B3LYP, B3LYP-GD3BJ (with empirical dispersion corrections), B3P86, and MP2(full) levels.
Journal of Chemical Physics | 2016
Christopher P. McNary
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer is performed on (N2H4)H+(H2O)n, where n = 1 and 2, and on the protonated unsymmetrical 1,1-dimethylhydrazine one-water complex. The primary dissociation pathway for all clusters is a loss of a single water molecule, which for n = 2 is followed by the sequential loss of an additional water molecule at higher collision energies. The data are analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies (BDEs). These are also converted using a rigid rotor/harmonic oscillator approximation to yield thermodynamic values at room temperature. Experimental BDEs compare favorably to theoretical BDEs determined at the B3LYP, M06, mPW1PW91, PBE0, MP2(full), and CCSD(T) levels of theory with a 6-311+G(2d,2p) basis set both with and without empirical dispersion. These calculations also allow visualization of the structures of these complexes, which are simple hydrogen-bonded donor-acceptors.
Journal of Chemical Physics | 2017
Christopher P. McNary
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N-N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.
Journal of Chemical Physics | 2017
Mohammadreza Rezaee; Christopher P. McNary
Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.
Journal of the American Society for Mass Spectrometry | 2017
John E. Carpenter; Christopher P. McNary; April Furin; Andrew F. Sweeney
Physical Chemistry Chemical Physics | 2016
Rebecca A. Coates; Georgia C. Boles; Christopher P. McNary; Giel Berden; Jos Oomens
Physical Chemistry Chemical Physics | 2014
Christopher P. McNary
Journal of Physical Chemistry A | 2016
Christopher P. McNary
Journal of Physical Chemistry B | 2018
Chenchen He; L. A. Hamlow; Zachary J Devereaux; Y. Zhu; Yuan-wei Nei; Lin Fan; Christopher P. McNary; Philippe Maitre; Vincent Steinmetz; Baptiste Schindler; Isabelle Compagnon; M. T. Rodgers
Physical Chemistry Chemical Physics | 2017
Rebecca A. Coates; Christopher P. McNary; Georgia C. Boles; Giel Berden; Jos Oomens