Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher P. Meyer is active.

Publication


Featured researches published by Christopher P. Meyer.


Science | 2008

Hopping Hotspots: Global Shifts in Marine Biodiversity

Willem Renema; David R. Bellwood; Juan C. Braga; K. Bromfield; Robert Hall; Kenneth G. Johnson; Peter Lunt; Christopher P. Meyer; L. B. McMonagle; Robert J. Morley; Aaron O'Dea; Jonathan A. Todd; Frank P. Wesselingh; Moyra E.J. Wilson; John M. Pandolfi

Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.


Frontiers in Zoology | 2013

A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents

Matthieu Leray; Joy Y Yang; Christopher P. Meyer; Suzanne C. Mills; Natalia Agudelo; Vincent Ranwez; Joel T Boehm; Ryuji J. Machida

IntroductionThe PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile (“universal”) COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups.ResultsWe first design a new PCR primer within the highly variable mitochondrial COI region, the “mlCOIintF” primer. We then show that this newly designed forward primer combined with the “jgHCO2198” reverse primer to target a 313xa0bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a higher taxonomic level using Bayesian assignment.ConclusionsThe molecular analysis of gut contents targeting the 313 COI fragment using the newly designed mlCOIintF primer in combination with the jgHCO2198 primer offers enormous promise for metazoan metabarcoding studies. We believe that this primer set will be a valuable asset for a range of applications from large-scale biodiversity assessments to food web studies.


Molecular Ecology Resources | 2013

Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys

Jonathan B. Geller; Christopher P. Meyer; M. Parker; H. Hawk

DNA barcoding is a powerful tool for species detection, identification and discovery. Metazoan DNA barcoding is primarily based upon a specific region of the cytochrome c oxidase subunit I gene that is PCR amplified by primers HCO2198 and LCO1490 (‘Folmer primers’) designed by Folmer et al. (Molecular Marine Biology and Biotechnology, 3, 1994, 294). Analysis of sequences published since 1994 has revealed mismatches in the Folmer primers to many metazoans. These sequences also show that an extremely high level of degeneracy would be necessary in updated Folmer primers to maintain broad taxonomic utility. In primers jgHCO2198 and jgLCO1490, we replaced most fully degenerated sites with inosine nucleotides that complement all four natural nucleotides and modified other sites to better match major marine invertebrate groups. The modified primers were used to amplify and sequence cytochrome c oxidase subunit I from 9105 specimens from Moorea, French Polynesia and San Francisco Bay, California, USA representing 23 phyla, 42 classes and 121 orders. The new primers, jgHCO2198 and jgLCO1490, are well suited for routine DNA barcoding, all‐taxon surveys and metazoan metagenomics.


PLOS ONE | 2012

Cryptic Diversity in Indo-Pacific Coral-Reef Fishes Revealed by DNA-Barcoding Provides New Support to the Centre-of-Overlap Hypothesis

Nicolas Hubert; Christopher P. Meyer; Henrich J. Bruggemann; Fabien Guérin; Roberto J. L. Komeno; Benoit Espiau; Romain Causse; Jeffrey T. Williams; Serge Planes

Diversity in coral reef fishes is not evenly distributed and tends to accumulate in the Indo-Malay-Philippines Archipelago (IMPA). The comprehension of the mechanisms that initiated this pattern is in its infancy despite its importance for the conservation of coral reefs. Considering the IMPA either as an area of overlap or a cradle of marine biodiversity, the hypotheses proposed to account for this pattern rely on extant knowledge about taxonomy and species range distribution. The recent large-scale use of standard molecular data (DNA barcoding), however, has revealed the importance of taking into account cryptic diversity when assessing tropical biodiversity. We DNA barcoded 2276 specimens belonging to 668 coral reef fish species through a collaborative effort conducted concomitantly in both Indian and Pacific oceans to appraise the importance of cryptic diversity in species with an Indo-Pacific distribution range. Of the 141 species sampled on each side of the IMPA, 62 presented no spatial structure whereas 67 exhibited divergent lineages on each side of the IMPA with K2P distances ranging between 1% and 12%, and 12 presented several lineages with K2P distances ranging between 3% and 22%. Thus, from this initial pool of 141 nominal species with Indo-Pacific distribution, 79 dissolved into 165 biological units among which 162 were found in a single ocean. This result is consistent with the view that the IMPA accumulates diversity as a consequence of its geological history, its location on the junction between the two main tropical oceans and the presence of a land bridge during glacial times in the IMPA that fostered allopatric divergence and secondary contacts between the Indian and Pacific oceans.


BMC Evolutionary Biology | 2008

Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach

Michael J. Hickerson; Christopher P. Meyer

BackgroundMarine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) soft vicariance, where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs).ResultsGiven the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling.ConclusionAlthough soft vicariance and colonization are likely to produce similar genetic patterns when a single taxon-pair is used, our hierarchical Bayesian model can potentially detect if either history is a dominant process across co-distributed taxon-pairs. As comparative phylogeographic datasets grow to include > 100 co-distributed taxon-pairs, the HABC approach will be well suited to dissect temporal patterns in community assembly and evolution, thereby providing a bridge linking comparative phylogeography with community ecology.


Molecular Phylogenetics and Evolution | 2010

Identifying coral reef fish larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae

Nicolas Hubert; Erwan Delrieu-Trottin; Jean-Olivier Irisson; Christopher P. Meyer; Serge Planes

A reference collection of COI barcode (650 bp) for the Pacific Society Islands has been constituted for 22 species of Acanthuridae and 16 species of Holocentridae. Divergence between congeneric species was on average 20-fold to 87-fold higher than divergence between conspecific sequences and this set of DNA-identifiers was used to identify 40 larvae of both families. All larvae sequenced could be identified to species using DNA-barcodes. Pools of larvae constitute multi-specific assemblages and no additional species compared to adult reef communities were sampled in larval pools, suggesting that the larval assemblages originated from adult communities on neighboring reefs.


Coral Reefs | 2009

Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding

L. Plaisance; Nancy Knowlton; Gustav Paulay; Christopher P. Meyer

The cryptofauna associated with coral reefs accounts for a major part of the biodiversity in these ecosystems but has been largely overlooked in biodiversity estimates because the organisms are hard to collect and identify. We combine a semi-quantitative sampling design and a DNA barcoding approach to provide metrics for the diversity of reef-associated crustacean. Twenty-two similar-sized dead heads of Pocillopora were sampled at 10xa0m depth from five central Pacific Ocean localities (four atolls in the Northern Line Islands and in Moorea, French Polynesia). All crustaceans were removed, and partial cytochrome oxidase subunit I was sequenced from 403 individuals, yielding 135 distinct taxa using a species-level criterion of 5% similarity. Most crustacean species were rare; 44% of the OTUs were represented by a single individual, and an additional 33% were represented by several specimens found only in one of the five localities. The Northern Line Islands and Moorea shared only 11 OTUs. Total numbers estimated by species richness statistics (Chao1 and ACE) suggest at least 90 species of crustaceans in Moorea and 150 in the Northern Line Islands for this habitat type. However, rarefaction curves for each region failed to approach an asymptote, and Chao1 and ACE estimators did not stabilize after sampling eight heads in Moorea, so even these diversity figures are underestimates. Nevertheless, even this modest sampling effort from a very limited habitat resulted in surprisingly high species numbers.


Molecular Ecology | 2002

Recent introduction of the dominant tunicate, Pyura praeputialis (Urochordata, Pyuridae) to Antofagasta, Chile

J. C. Castilla; Allen Gilbert Collins; Christopher P. Meyer; R. Guinez; D. R. Lindberg

The large sessile tunicate Pyura stolonifera (Pleurogona: Stolibranchiata: Pyuridae), has been regarded as a complex taxon with disjointed distributions, including Australia (Pyura stolonifera praeputialis), South Africa (Pyura stolonifera stolonifera) and South America (Chile, Antofagasta: Pyura sp., the ‘piure de Antofagasta’), and has been cited under at least five taxonomic combinations. The ‘piure de Antofagasta’ is a competitively dominant species in rocky intertidal habitats and shows a limited geographical range (60–70 km) exclusively inside the Bay of Antofagasta. Using cytochrome oxidase I (COI) mitochondrial sequence data from Pyura specimens of the three taxa we tested whether the Chilean taxon represents: (i) a Gondwana relict; (ii) a more recently divergent species; or (iii) a recently introduced species. The results suggest that the Chilean taxon is a recent introduction to Chile from Australian populations and that Pyura stolonifera praeputialis, from Australia, and the ‘piure de Antofagasta’ are geographical populations of a single species: Pyura praeputialis; whereas the South African taxon represents a second species: Pyura stolonifera.


Molecular Phylogenetics and Evolution | 2008

Hidden diversity in a hyperdiverse gastropod genus: Discovery of previously unidentified members of a Conus species complex

Thomas F. Duda; Matthew B. Bolin; Christopher P. Meyer; Alan J. Kohn

Molecular sequence data are a powerful tool for delimiting species, particularly in cases where morphological differences are obscure. Distinguishing species in the Conus sponsalis complex of tropical marine gastropods has long been difficult, because descriptions and identification has relied exclusively on shell characters, primarily color patterns, and these often appear to intergrade among putative species. Here we use molecular sequence data from two mitochondrial gene regions (16S rRNA and cytochrome oxidase subunit I) and one nuclear locus (a four-loop conotoxin gene) to characterize the genetic discontinuity of the nominal species of this group currently accepted as valid: the Indo-West Pacific C. sponsalis, C. nanus, C. ceylanensis, C. musicus and C. parvatus, and the eastern Pacific C. nux. In these analyses C. nanus and C. sponsalis resolve quite well and appear to represent distinct evolutionary units that are mostly congruent with morphology-based distinctions. We also identified several cryptic entities whose genetic uniqueness suggests species-level distinctions. Two of these fit the original description of C. sponsalis; three forms appear to represent C. nanus but differ in adult shell size or possess a unique shell color pattern.


PeerJ | 2015

Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

Matthieu Leray; Christopher P. Meyer; Suzanne C. Mills

Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction.

Collaboration


Dive into the Christopher P. Meyer's collaboration.

Top Co-Authors

Avatar

John Deck

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Leray

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Davies

University of California

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Coddington

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge