Christopher P. Thomas
Cardiff University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher P. Thomas.
Journal of Biological Chemistry | 2010
Christopher P. Thomas; Lloyd T. Morgan; Ben Maskrey; Robert C. Murphy; Hartmut Kühn; Stanley L. Hazen; Alison H. Goodall; Hassan A. Hamali; Peter William Collins; Valerie Bridget O'Donnell
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.
Clinical & Experimental Allergy | 2009
L. G. Gregory; B. Causton; J. R. Murdoch; Sara A. Mathie; Valerie Bridget O'Donnell; Christopher P. Thomas; F. M. Priest; Diana Quint
Background Inhaled house dust mite (HDM) results in T‐helper (TH) 2 type pathology in unsensitized mice, in conjunction with airway hyperreactivity and airway remodelling. However, the pulmonary cytokine and chemokine profile has not been reported.
Blood | 2011
Stephen Robert Clark; Christopher J. Guy; Martin John Scurr; Philip R. Taylor; Ann Patricia Kift-Morgan; Victoria Jayne Hammond; Christopher P. Thomas; Barbara Coles; Gareth Roberts; Matthias Eberl; Simon Arnett Jones; Nicholas Topley; Sailesh Kotecha; Valerie Bridget O'Donnell
5-Lipoxygenase (5-LOX) plays key roles in infection and allergic responses. Herein, four 5-LOX-derived lipids comprising 5-hydroxyeicosatetraenoic acid (HETE) attached to phospholipids (PLs), either phosphatidylethanolamine (PE) or phosphatidylcholine (18:0p/5-HETE-PE, 18:1p/5-HETE-PE, 16:0p/5-HETE-PE, and 16:0a/5-HETE-PC), were identified in primary human neutrophils. They formed within 2 minutes in response to serum-opsonized Staphylococcus epidermidis or f-methionine-leucine-phenylalanine, with priming by lipopolysaccharide, granulocyte macrophage colony-stimulating factor, or cytochalasin D. Levels generated were similar to free 5-HETE (0.37 ± 0.14 ng vs 0.55 ± 0.18 ng/10(6) cells, esterified vs free 5-HETE, respectively). They remained cell associated, localizing to nuclear and extranuclear membrane, and were formed by fast esterification of newly synthesized free 5-HETE. Generation also required Ca(2+), phospholipase C, cytosolic and secretory phospholipase A(2), 5-LOX activating protein, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1. 5-HETE-PLs were detected in murine S epidermidis peritonitis, paralleling neutrophil influx, and in effluent from Gram-positive human bacterial peritonitis. Formation of neutrophil extracellular traps was significantly enhanced by 5-LOX inhibition but attenuated by HETE-PE, whereas 5-HETE-PE enhanced superoxide and interleukin-8 generation. Thus, new molecular species of oxidized PL formed by human neutrophils during bacterial infection are identified and characterized.
Biochemical Journal | 2010
Lloyd T. Morgan; Christopher P. Thomas; Hartmut Kühn; Valerie Bridget O'Donnell
Arachidonate-containing oxidized phospholipids are acutely generated by 12-LOX (12-lipoxygenase) in agonist-activated platelets. In the present study, formation of structurally related lipids by oxidation of DHA (docosahexaenoic acid)-containing phospholipids is demonstrated using lipidomic approaches. Precursor scanning reverse-phase LC (liquid chromatography)-MS/MS (tandem MS) identified a new family of lipids that comprise phospholipid-esterified HDOHE (hydroxydocosahexaenoic acid). Two diacyl and two plasmalogen PEs (phosphatidylethanolamines) containing predominantly the 14-HDOHE positional isomer (18:0p/14-HDOHE-PE, 18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) were structurally characterized using MS/MS and by comparison with biogenic standards. An involvement of 12-LOX was indicated as purified recombinant human 12-LOX also generated the 14-HDOHE isomer from DHA. Pharmacological studies using inhibitors and recombinant platelet 12-LOX indicate that they form via esterification of newly formed non-esterified HDOHE. HDOHE-PEs formed at significant rates (2-4 ng/4×10(7) cells) within 2-180 min of thrombin stimulation, and their formation was blocked by calcium chelation. In summary, a new family of oxidized phospholipid was identified in thrombin-activated human platelets.
Journal of Biological Chemistry | 2009
Alwena H. Morgan; Vincent Dioszeghy; Benjamin H. Maskrey; Christopher P. Thomas; Stephen Robert Clark; Sara A. Mathie; Hartmut Kühn; Nicholas Topley; Barbara Coles; Philip R. Taylor; Simon Arnett Jones; Valerie Bridget O'Donnell
In this study, murine peritoneal macrophages from naïve lavage were found to generate four phospholipids that contain 12-hydroxyeicosatetraenoic acid (12-HETE). They comprise three plasmalogen and one diacyl phosphatidylethanolamines (PEs) (16:0p, 18:1p, 18:0p, and 18:0a at sn-1) and are absent in macrophages from 12/15-lipoxygenase (12/15-LOX)-deficient mice. They are generated acutely in response to calcium mobilization, are primarily cell-associated, and are detected on the outside of the plasma membrane. Levels of 12-HETE-PEs in naïve lavage are in a similar range to those of free 12-HETE (5.5 ± 0.2 ng or 18.5 ± 1.03 ng/lavage for esterified versus free, respectively). In healthy mice, 12/15-LOX-derived 12-HETE-PEs are found in the peritoneal cavity, peritoneal membrane, lymph node, and intestine, with a similar distribution to 12/15-LOX-derived 12-HETE. In vivo generation of 12-HETE-PEs occurs in a Th2-dependent model of murine lung inflammation associated with interleukin-4/interleukin-13 expression. In contrast, in Toll receptor-dependent peritonitis mediated either by live bacteria or bacterial products, 12-HETE-PEs are rapidly cleared during the acute phase then reappear during resolution. The human homolog, 18:0a/15-HETE-PE inhibited human monocyte generation of cytokines in response to lipopolysaccharide. In summary, a new family of lipid mediators generated by murine macrophages during Th2 inflammation are identified and structurally characterized. The studies suggest a new paradigm for lipids generated by 12/15-LOX in inflammation involving formation of esterified eicosanoids.
Journal of Biological Chemistry | 2012
Victoria Jayne Hammond; Alwena H. Morgan; Sarah Nicol Lauder; Christopher P. Thomas; Sarah Brown; Bruce A. Freeman; Jane C. Davies; Andrew Bush; Anna-Liisa Levonen; Emilia Kansanen; Luis Villacorta; Y. Eugene Chen; Ned A. Porter; Yoel Garcia-Diaz; Francisco J. Schopfer; Valerie Bridget O'Donnell
Background: Lipoxygenases (LOXs) generate eicosanoids in inflammation. Results: Monocyte/macrophage LOXs generate novel phospholipid-esterified eicosanoids containing ketoeicosatetraenoic acid or hydroperoxyeicosatetraenoic acid. They activate peroxisome proliferator-activated receptor-γ transcriptional activity and are found in cystic fibrosis bronchoalveolar fluid. Significance: LOXs generate esterified eicosanoids in vitro and in vivo. Conclusion: These new lipids represent new families of bioactive mediators. 12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo.
Biochimica et Biophysica Acta | 2014
Agustí Muñoz-Garcia; Christopher P. Thomas; Diane S. Keeney; Yuxiang Zheng; Alan R. Brash
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Stephen Robert Clark; Christopher P. Thomas; Victoria Jayne Hammond; Maceler Aldrovandi; Gavin William Grahame Wilkinson; Keith William Hart; Robert C. Murphy; Peter William Collins; Valerie Bridget O'Donnell
Aminophospholipid (APL) trafficking across the plasma membrane is a key event in cell activation, apoptosis, and aging and is required for clearance of dying cells and coagulation. Currently the phospholipid molecular species externalized are unknown. Using a lipidomic method, we show that thrombin, collagen, or ionophore-activated human platelets externalize two phosphatidylserines (PSs) and five phosphatidylethanolamines (PEs). Four percent of the total cellular PE/PS pool (∼300 ng/2 × 108 cells, thrombin), is externalized via calcium mobilization and protease-activated receptors-1 and -4, and 48% is contained in microparticles. Apoptosis and energy depletion (aging) externalized the same APLs in a calcium-dependent manner, and all stimuli externalized oxidized phospholipids, termed hydroxyeicosatetraenoic acid-PEs. Transmembrane protein-16F (TMEM-16F), the protein mutated in Scott syndrome, was required for PE/PS externalization during thrombin activation and energy depletion, but not apoptosis. Platelet-specific APLs optimally supported tissue factor-dependent coagulation in human plasma, vs. APL with longer or shorter fatty acyl chains. This finding demonstrates fatty acids as molecular determinants of APL that regulate hemostasis. Thus, the molecular species of externalized APL during platelet activation, apoptosis, and energy depletion were characterized, and their ability to support coagulation revealed. The findings have therapeutic implications for bleeding disorders and transfusion therapy. The assay could be applied to other cell events characterized by APL externalization, including cell division and vesiculation.
Journal of Biological Chemistry | 2011
Andrés Trostchansky; Lucía Bonilla; Christopher P. Thomas; Valerie Bridget O'Donnell; Lawrence J. Marnett; Rafael Radi; Homero Rubbo
Prostaglandin endoperoxide H synthase (PGHS) catalyzes the oxidation of arachidonate to prostaglandin H2. We have previously synthesized and chemically characterized nitroarachidonic acid (AANO2), a novel anti-inflammatory signaling mediator. Herein, the interaction of AANO2 with PGHS was analyzed. AANO2 inhibited oxygenase activity of PGHS-1 but not PGHS-2. AANO2 exhibited time- and concentration-dependent inhibition of peroxidase activity in both PGHS-1 and -2. The plot of kobs versus AANO2 concentrations showed a hyperbolic function with kinact = 0.045 s−1 and Ki*app = 0.019 μm for PGHS-1 and kinact = 0.057 s−1 and Ki*app = 0.020 μm for PGHS-2. Kinetic analysis suggests that inactivation of PGHS by AANO2 involves two sequential steps: an initial reversible binding event (described by Ki) followed by a practically irreversible event (Ki*app) leading to an inactivated enzyme. Inactivation was associated with irreversible disruption of heme binding to the protein. The inhibitory effects of AANO2 were selective because other nitro-fatty acids tested, such as nitrooleic acid and nitrolinoleic acid, were unable to inhibit enzyme activity. In activated human platelets, AANO2 significantly decreased PGHS-1-dependent thromboxane B2 formation in parallel with a decrease in platelet aggregation, thus confirming the biological relevance of this novel inhibitory pathway.
Nature Protocols | 2010
Alwena H. Morgan; Victoria Jayne Hammond; Lloyd T. Morgan; Christopher P. Thomas; Keri A. Tallman; Yoel Ruslan Garcia-Diaz; Christopher McGuigan; Michaela Serpi; Ned A. Porter; Robert C. Murphy; Valerie Bridget O'Donnell
Phospholipid-esterified oxylipins include newly described families of bioactive lipids generated by lipoxygenases in immune cells. Until now, assays for their quantitation were not well developed or widely available. Here, we describe a mass spectrometric protocol that enables accurate measurement of several esterified oxylipins—in particular hydro(pero)xyeicosatetraenoic acids, hydroxyoctadecadienoic acids, hydroxydocosahexaenoic acids and keto-eicosatetraenoic acids—attached to either phosphatidylethanolamine or phosphatidylcholine. Lipids are isolated from cells or tissue using a liquid-phase organic extraction, then analyzed by HPLC–tandem mass spectrometry (LC/MS/MS) in multiple reaction–monitoring mode. The protocol can simultaneously monitor up to 23 species. Generation of standards takes ∼2 d. Following this, extraction of 30 samples takes ∼3 h, with LC/MS/MS run time of 50 min per sample.