Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Pfleger is active.

Publication


Featured researches published by Christopher Pfleger.


Journal of Chemical Information and Modeling | 2012

Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface.

Alexander Metz; Christopher Pfleger; Hannes Kopitz; Stefania Pfeiffer-Marek; Karl-Heinz Baringhaus; Holger Gohlke

Protein-protein interfaces are considered difficult targets for small-molecule protein-protein interaction modulators (PPIMs ). Here, we present for the first time a computational strategy that simultaneously considers aspects of energetics and plasticity in the context of PPIM binding to a protein interface. The strategy aims at identifying the determinants of small-molecule binding, hot spots, and transient pockets, in a protein-protein interface in order to make use of this knowledge for predicting binding modes of and ranking PPIMs with respect to their affinity. When applied to interleukin-2 (IL-2), the computationally inexpensive constrained geometric simulation method FRODA outperforms molecular dynamics simulations in sampling hydrophobic transient pockets. We introduce the PPIAnalyzer approach for identifying transient pockets on the basis of geometrical criteria only. A sequence of docking to identified transient pockets, starting structure selection based on hot spot information, RMSD clustering and intermolecular docking energies, and MM-PBSA calculations allows one to enrich IL-2 PPIMs from a set of decoys and to discriminate between subgroups of IL-2 PPIMs with low and high affinity. Our strategy will be applicable in a prospective manner where nothing else than a protein-protein complex structure is known; hence, it can well be the first step in a structure-based endeavor to identify PPIMs.


Nucleic Acids Research | 2013

CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function

Dennis M. Krüger; Prakash Chandra Rathi; Christopher Pfleger; Holger Gohlke

The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.


Journal of Chemical Information and Modeling | 2011

Pocket-space maps to identify novel binding-site conformations in proteins

Ian R. Craig; Christopher Pfleger; Holger Gohlke; Jonathan W. Essex; Katrin Spiegel

The identification of novel binding-site conformations can greatly assist the progress of structure-based ligand design projects. Diverse pocket shapes drive medicinal chemistry to explore a broader chemical space and thus present additional opportunities to overcome key drug discovery issues such as potency, selectivity, toxicity, and pharmacokinetics. We report a new automated approach to diverse pocket selection, PocketAnalyzer(PCA), which applies principal component analysis and clustering to the output of a grid-based pocket detection algorithm. Since the approach works directly with pocket shape descriptors, it is free from some of the problems hampering methods that are based on proxy shape descriptors, e.g. a set of atomic positional coordinates. The approach is technically straightforward and allows simultaneous analysis of mutants, isoforms, and protein structures derived from multiple sources with different residue numbering schemes. The PocketAnalyzer(PCA) approach is illustrated by the compilation of diverse sets of pocket shapes for aldose reductase and viral neuraminidase. In both cases this allows identification of novel computationally derived binding-site conformations that are yet to be observed crystallographically. Indeed, known inhibitors capable of exploiting these novel binding-site conformations are subsequently identified, thereby demonstrating the utility of PocketAnalyzer(PCA) for rationalizing and improving the understanding of the molecular basis of protein-ligand interaction and bioactivity. A Python program implementing the PocketAnalyzer(PCA) approach is available for download under an open-source license ( http://sourceforge.net/projects/papca/ or http://cpclab.uni-duesseldorf.de/downloads ).


Journal of Computational Chemistry | 2013

Global and local indices for characterizing biomolecular flexibility and rigidity

Christopher Pfleger; Sebastian Radestock; Elena Schmidt; Holger Gohlke

Understanding flexibility and rigidity characteristics of biomolecules is a prerequisite for understanding biomolecular structural stability and function. Computational methods have been implemented that directly characterize biomolecular flexibility and rigidity by constraint network analysis. For deriving maximal advantage from these analyses, their results need to be linked to biologically relevant characteristics of a structure. Such links are provided by global and local measures (“indices”) of biomolecular flexibility and rigidity. To date, more than 14 indices are available with sometimes overlapping or only vague definitions. We present concise definitions of these indices, analyze the relation between, and the scope and limitations of them, and compare their informative value. For this, we probe the structural stability of the calcium binding protein α‐lactalbumin as a showcase, both in the “ground state” and after perturbing the system by changing the network topology. In addition, we introduce three indices for the first time that extend the application domain of flexibility and rigidity analyses. The results allow us to provide guidelines for future studies suggesting which of these indices could best be used for analyzing, understanding, and quantifying structural features that are important for biomolecular stability and function. Finally, we make suggestions for proper index notations in future studies to prevent the misinterpretation and to facilitate the comparison of results obtained from flexibility and rigidity analyses.


Structure | 2013

Efficient and Robust Analysis of Biomacromolecular Flexibility Using Ensembles of Network Topologies Based on Fuzzy Noncovalent Constraints

Christopher Pfleger; Holger Gohlke

We describe an approach (ENT(FNC)) for performing rigidity analyses of biomacromolecules on ensembles of network topologies (ENT) generated from a single input structure. The ENT is based on fuzzy noncovalent constraints, which considers thermal fluctuations of biomacromolecules without actually sampling conformations. Definitions for fuzzy noncovalent constraints were derived from persistency data from molecular dynamics (MD) simulations. A very good agreement between local flexibility and rigidity characteristics from ENT(FNC) and MD simulations-generated ensembles is found. Regarding global characteristics, convincing results were obtained when relative thermostabilities of citrate synthase and lipase A structures were computed. The ENT(FNC) approach significantly improves the robustness of rigidity analyses, is highly efficient, and does not require a protein-specific parameterization. Its low computational demand makes it especially valuable for the analysis of large data sets, e.g., for data-driven protein engineering.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2017

Rigidity theory for biomolecules: concepts, software, and applications

Susanne M.A. Hermans; Christopher Pfleger; Christina Nutschel; Christian A. Hanke; Holger Gohlke

The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo‐)stability, protein (un‐)folding, and coarse‐graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure‐based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large‐scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311


Journal of Chemical Theory and Computation | 2017

Ensemble- and rigidity theory-based perturbation approach to analyze dynamic allostery

Christopher Pfleger; Alexander Minges; Markus Boehm; Christopher L. McClendon; Rubben Torella; Holger Gohlke

Allostery describes the functional coupling between sites in biomolecules. Recently, the role of changes in protein dynamics for allosteric communication has been highlighted. A quantitative and predictive description of allostery is fundamental for understanding biological processes. Here, we integrate an ensemble-based perturbation approach with the analysis of biomolecular rigidity and flexibility to construct a model of dynamic allostery. Our model, by definition, excludes the possibility of conformational changes, evaluates static, not dynamic, properties of molecular systems, and describes allosteric effects due to ligand binding in terms of a novel free-energy measure. We validated our model on three distinct biomolecular systems: eglin c, protein tyrosine phosphatase 1B, and the lymphocyte function-associated antigen 1 domain. In all cases, it successfully identified key residues for signal transmission in very good agreement with the experiment. It correctly and quantitatively discriminated between positively or negatively cooperative effects for one of the systems. Our model should be a promising tool for the rational discovery of novel allosteric drugs.


Scientific Reports | 2018

Recognition motif and mechanism of ripening inhibitory peptides in plant hormone receptor ETR1

Dalibor Milić; Markus Dick; Daniel Mulnaes; Christopher Pfleger; Anna Kinnen; Holger Gohlke; Georg Groth

Synthetic peptides derived from ethylene-insensitive protein 2 (EIN2), a central regulator of ethylene signalling, were recently shown to delay fruit ripening by interrupting protein–protein interactions in the ethylene signalling pathway. Here, we show that the inhibitory peptide NOP-1 binds to the GAF domain of ETR1 – the prototype of the plant ethylene receptor family. Site-directed mutagenesis and computational studies reveal the peptide interaction site and a plausible molecular mechanism for the ripening inhibition.


Journal of Cheminformatics | 2011

Towards targeting protein-protein interfaces with small molecules

Holger Gohlke; Alexander Metz; Christopher Pfleger; Dennis M. Krüger; Sina Kazemi

A promising way to interfere with biological processes is through the control of protein-protein interactions by means of small molecules that modulate the formation of protein-protein complexes. Although the feasibility of this approach has been demonstrated in principle by recent results, many of the small-molecule modulators known to date have not been found by rational design approaches. In large part this is due to the challenges that one faces in dealing with protein binding epitopes compared to, e.g., enzyme binding pockets. Recent advances in the understanding of the energetics and dynamics of protein binding interfaces[1] and methodological developments in the field of structure-based drug design methods may open up a way to apply rational design approaches also for finding protein-protein interaction modulators.2 Here, we first show in a retrospective analysis of the well-investigated interleukin-2 system how I) potential binding sites in an interface can be identified from an unbound protein structure, II) the interface can be dissected in terms of energetic contributions of single residues, and III) one can make use of this knowledge for guiding the development of small-molecule modulators. When applied to a leukaemia-associated fusion protein in a prospective manner, the predictive character of the methodology is demonstrated [2]. Another challenge arises from the fact that protein-protein interfaces are flexible. In the second part, we thus demonstrate a novel approach for including protein flexibility into protein-ligand docking[3]. This approach is based on elastic potential grids, which provide an accurate and efficient representation of intermolecular interactions in fully-flexible docking.


Journal of Chemical Information and Modeling | 2013

Constraint Network Analysis (CNA): A Python Software Package for Efficiently Linking Biomacromolecular Structure, Flexibility, (Thermo-)Stability, and Function

Christopher Pfleger; Prakash Chandra Rathi; Doris L. Klein; Sebastian Radestock; Holger Gohlke

Collaboration


Dive into the Christopher Pfleger's collaboration.

Top Co-Authors

Avatar

Holger Gohlke

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Metz

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris L. Klein

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Kinnen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge