Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Probst is active.

Publication


Featured researches published by Christopher Probst.


Lab on a Chip | 2012

A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.

Alexander Grünberger; Nicole Paczia; Christopher Probst; Georg Schendzielorz; Lothar Eggeling; Stephan Noack; Wolfgang Wiechert; Dietrich Kohlheyer

In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.


Cytometry Part A | 2015

Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform

Alexander Grünberger; Christopher Probst; Stefan Helfrich; Arun Nanda; Birgit Stute; Wolfgang Wiechert; Eric von Lieres; Katharina Nöh; Julia Frunzke; Dietrich Kohlheyer

Cell‐to‐cell heterogeneity typically evolves due to a manifold of biological and environmental factors and special phenotypes are often relevant for the fate of the whole population but challenging to detect during conventional analysis. We demonstrate a microfluidic single‐cell cultivation platform that incorporates several hundred growth chambers, in which isogenic bacteria microcolonies growing in cell monolayers are tracked by automated time‐lapse microscopy with spatiotemporal resolution. The device was not explicitly developed for a specific organism, but has a very generic configuration suitable for various different microbial organisms. In the present study, we analyzed Corynebacterium glutamicum microcolonies, thereby generating complete lineage trees and detailed single‐cell data on division behavior and morphology in order to demonstrate the platforms overall capabilities. Furthermore, the occurrence of spontaneously induced stress in individual C. glutamicum cells was investigated by analyzing strains with genetically encoded reporter systems and optically visualizing SOS response. The experiments revealed spontaneous SOS induction in the absence of any external trigger comparable to results obtained by flow cytometry (FC) analyzing cell samples from conventional shake flask cultivation. Our microfluidic setup delivers detailed single‐cell data with spatial and temporal resolution; complementary information to conventional FC results.


Journal of Visualized Experiments | 2013

Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation

Alexander Gruenberger; Christopher Probst; Antonia Heyer; Wolfgang Wiechert; Julia Frunzke; Dietrich Kohlheyer

In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs.


Micromachines | 2013

Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria

Christopher Probst; Alexander Grünberger; Wolfgang Wiechert; Dietrich Kohlheyer

Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired.


Journal of Microbiological Methods | 2013

Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes

Christopher Probst; Alexander Grünberger; Wolfgang Wiechert; Dietrich Kohlheyer

Single-cell analysis in microfluidic systems has opened up new possibilities in biotechnological research enabling us to deal with large eukaryotic cells and even small bacteria. In particular, transient investigations in laminar flow or diffusive environments can be performed to unravel single cell behaviour. Up to now, most systems have been limited with respect to precise cell inoculation and sampling methods. Individual cell selection and manipulations have now been made possible by combining laser tweezers with microfluidic cell cultivation environments specifically tailored for micrometre-sized bacteria. Single cells were optically seeded into various micrometre-sized growth sites arranged in parallel. During cultivation, single-cell elongation, morphology and growth rates were derived from single cells and microcolonies of up to 500 cells. Growth of irradiated bacteria was not impaired by minimizing the exposed laser dosage as confirmed by exceptional growth rates. In fact, Escherichia coli exhibited doubling times of less than 20min. For the first time, a filamentous Escherichia coli WT (MG1655) was safely relocated from its growing microcolony by laser manipulations. The cell was transferred to an empty cultivation spot allowing single-cell growth and morphology investigations. Contrary to previous discussions, the filamentous E. coli exhibited normal cell morphology and division after a few generations. This combination of optical tweezers and single-cell analysis in microfluidics adds a new degree of freedom to microbial single-cell analysis.


Analytical Methods | 2015

Rapid inoculation of single bacteria into parallel picoliter fermentation chambers

Christopher Probst; Alexander Grünberger; Nadja Braun; Stefan Helfrich; Katharina Nöh; Wolfgang Wiechert; Dietrich Kohlheyer

Microfluidic single-cell cultivation devices have been successfully utilized in a variety of biological research fields. One major obstacle to the successful implementation of high throughput single-cell cultivation technology is the requirement for a simple, fast and reliable cell inoculation procedure. In the present report, an air-bubble-based cell loading methodology is described and validated for inoculating single bacteria into multiple picoliter sized growth chambers arranged in a highly parallel manner. It is shown that the application of the injected air bubble can serve as a reproducible mechanism to modify laminar flow conditions. In this way, convective flow was temporarily induced in more than 1000 cultivation chambers simultaneously, which under normal conditions operate exclusively under diffusive mass transport. Within an inoculation time of 100 s, Corynebacterium glutamicum cells were inoculated by convection at minimal stress level and single bacteria remain successfully trapped by cell-wall interactions. The procedure is easy, fast, gentle and requires only minimal fluidic control and equipment. The technique is well suited for microbial cell loading into commonly used microfluidic growth sites arranged in parallel intended for high throughput single-cell analysis.


Bioinformatics | 2015

Vizardous: interactive analysis of microbial populations with single cell resolution

Stefan Helfrich; Charaf Eddine Azzouzi; Christopher Probst; Johannes Seiffarth; Alexander Grünberger; Wolfgang Wiechert; Dietrich Kohlheyer; Katharina Nöh

MOTIVATION Single cell time-lapse microscopy is a powerful method for investigating heterogeneous cell behavior. Advances in microfluidic lab-on-a-chip technologies and live-cell imaging render the parallel observation of the development of individual cells in hundreds of populations possible. While image analysis tools are available for cell detection and tracking, biologists are still confronted with the challenge of exploring and evaluating this data. RESULTS We present the software tool Vizardous that assists scientists with explorative analysis and interpretation tasks of single cell data in an interactive, configurable and visual way. With Vizardous, lineage tree drawings can be augmented with various, time-resolved cellular characteristics. Associated statistical moments bridge the gap between single cell and the population-average level. AVAILABILITY AND IMPLEMENTATION The software, including documentation and examples, is available as executable Java archive as well as in source form at https://github.com/modsim/vizardous. CONTACT [email protected]. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


PLOS ONE | 2016

Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

Christian Carsten Sachs; Alexander Grünberger; Stefan Helfrich; Christopher Probst; Wolfgang Wiechert; Dietrich Kohlheyer; Katharina Nöh

Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.


Current Developments in Biotechnology and Bioengineering#R##N#Bioprocesses, Bioreactors and Controls | 2017

Application of Mini- and Micro-Bioreactors for Microbial Bioprocesses

Tobias Ladner; Frank Delvigne; Dietrich Kohlheyer; Alexander Grünberger; Jochen Büchs; Christopher Probst

The development of mini- and micro-cultivation devices allows the optimization of bioprocesses to be speeded up, as well as a better understanding of microbial physiology under process conditions. Mini-bioreactors have been specifically developed for the parallel cultivation of microorganisms under process-representative conditions. These scaled-down models of industrial bioreactors can easily be multiplied to perform high-throughput studies. Micro-cultivation devices have also been designed to obtain deeper insight on the level of microbial physiology. More specifically, single-cell micro-cultivation devices have been developed to study the impact of microbial phenotypic heterogeneity on bioprocesses.


PLOS ONE | 2016

Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.

Dennis Binder; Christopher Probst; Alexander Grünberger; Fabienne Hilgers; Anita Loeschcke; Karl-Erich Jaeger; Dietrich Kohlheyer; Thomas Drepper

Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust triggering of bacterial gene expression in E. coli in a homogeneous fashion.

Collaboration


Dive into the Christopher Probst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Frunzke

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Katharina Nöh

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Stefan Helfrich

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Noack

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge