Christopher R. Bethel
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher R. Bethel.
Journal of Antimicrobial Chemotherapy | 2009
Andrea Endimiani; Andrea M. Hujer; Federico Perez; Christopher R. Bethel; Kristine M. Hujer; J. Kroeger; Margret Oethinger; David L. Paterson; Mark D. Adams; Michael R. Jacobs; Daniel J. Diekema; Gerri S. Hall; Stephen G. Jenkins; Louis B. Rice; Fred C. Tenover; Robert A. Bonomo
BACKGROUND The emergence of bla(KPC)-containing Klebsiella pneumoniae (KPC-Kp) isolates is attracting significant attention. Outbreaks in the Eastern USA have created serious treatment and infection control problems. A comparative multi-institutional analysis of these strains has not yet been performed. METHODS We analysed 42 KPC-Kp recovered during 2006-07 from five institutions located in the Eastern USA. Antimicrobial susceptibility tests, analytical isoelectric focusing (aIEF), PCR and sequencing of bla genes, PFGE and rep-PCR were performed. Results By in vitro testing, KPC-Kp isolates were highly resistant to all non-carbapenem beta-lactams (MIC(90)s >or= 128 mg/L). Among carbapenems, MIC(50/90)s were 4/64 mg/L for imipenem and meropenem, 4/32 mg/L for doripenem and 8/128 for ertapenem. Combinations of clavulanate or tazobactam with a carbapenem or cefepime did not significantly lower the MIC values. Genetic analysis revealed that the isolates possessed the following bla genes: bla(KPC-2) (59.5%), bla(KPC-3) (40.5%), bla(TEM-1) (90.5%), bla(SHV-11) (95.2%) and bla(SHV-12) (50.0%). aIEF of crude beta-lactamase extracts from these strains supported our findings, showing beta-lactamases at pIs of 5.4, 7.6 and 8.2. The mean number of beta-lactamases was 3.5 (range 3-5). PFGE demonstrated that 32 (76.2%) isolates were clonally related (type A). Type A KPC-Kp isolates (20 bla(KPC-2) and 12 bla(KPC-3)) were detected in each of the five institutions. rep-PCR showed patterns consistent with PFGE. CONCLUSIONS We demonstrated the complex beta-lactamase background of KPC-Kp isolates that are emerging in multiple centres in the Eastern USA. The prevalence of a single dominant clone suggests that interstate transmission has occurred.
Antimicrobial Agents and Chemotherapy | 2005
Kristine M. Hujer; Nashaat S. Hamza; Andrea M. Hujer; Federico Perez; Marion S. Helfand; Christopher R. Bethel; Jodi M. Thomson; Vernon E. Anderson; Miriam Barlow; Louis B. Rice; Fred C. Tenover; Robert A. Bonomo
ABSTRACT Acinetobacter spp. are emerging as opportunistic hospital pathogens that demonstrate resistance to many classes of antibiotics. In a metropolitan hospital in Cleveland, a clinical isolate of Acinetobacter baumannii that tested resistant to cefepime and ceftazidime (MIC = 32 μg/ml) was identified. Herein, we sought to determine the molecular basis for the extended-spectrum-cephalosporin resistance. Using analytical isoelectric focusing, a β-lactamase with a pI of ≥9.2 was detected. PCR amplification with specific A. baumannii cephalosporinase primers yielded a 1,152-bp product which, when sequenced, identified a novel 383-amino-acid class C enzyme. Expressed in Escherichia coli DH10B, this β-lactamase demonstrated greater resistance against ceftazidime and cefotaxime than cefepime (4.0 μg/ml versus 0.06 μg/ml). The kinetic characteristics of this β-lactamase were similar to other cephalosporinases found in Acinetobacter spp. In addition, this cephalosporinase was inhibited by meropenem, imipenem, ertapenem, and sulopenem (Ki < 40 μM). The amino acid compositions of this novel enzyme and other class C β-lactamases thus far described for A. baumannii, Acinetobacter genomic species 3, and Oligella urethralis in Europe and South Africa suggest that this cephalosporinase defines a unique family of class C enzymes. We propose a uniform designation for this family of cephalosporinases (Acinetobacter-derived cephalosporinases [ADC]) found in Acinetobacter spp. and identify this enzyme as ADC-7 β-lactamase. The coalescence of Acinetobacter ampC β-lactamases into a single common ancestor and the substantial phylogenetic distance separating them from other ampC genes support the logical value of developing a system of nomenclature for these Acinetobacter cephalosporinase genes.
Antimicrobial Agents and Chemotherapy | 2010
Krisztina M. Papp-Wallace; Christopher R. Bethel; Anne M. Distler; Courtney Kasuboski; Magdalena A. Taracila; Robert A. Bonomo
ABSTRACT As resistance determinants, KPC β-lactamases demonstrate a wide substrate spectrum that includes carbapenems, oxyimino-cephalosporins, and cephamycins. In addition, clinical strains harboring KPC-type β-lactamases are often identified as resistant to standard β-lactam-β-lactamase inhibitor combinations in susceptibility testing. The KPC-2 carbapenemase presents a significant clinical challenge, as the mechanistic bases for KPC-2-associated phenotypes remain elusive. Here, we demonstrate resistance by KPC-2 to β-lactamase inhibitors by determining that clavulanic acid, sulbactam, and tazobactam are hydrolyzed by KPC-2 with partition ratios (kcat/kinact ratios, where kinact is the rate constant of enzyme inactivation) of 2,500, 1,000, and 500, respectively. Methylidene penems that contain an sp2-hybridized C3 carboxylate and a bicyclic R1 side chain (dihydropyrazolo[1,5-c][1,3]thiazole [penem 1] and dihydropyrazolo[5,1-c][1,4]thiazine [penem 2]) are potent inhibitors: Km of penem 1, 0.06 ± 0.01 μM, and Km of penem 2, 0.006 ± 0.001 μM. We also demonstrate that penems 1 and 2 are mechanism-based inactivators, having partition ratios (kcat/kinact ratios) of 250 and 50, respectively. To understand the mechanism of inhibition by these penems, we generated molecular representations of both inhibitors in the active site of KPC-2. These models (i) suggest that penem 1 and penem 2 interact differently with active site residues, with the carbonyl of penem 2 being positioned outside the oxyanion hole and in a less favorable position for hydrolysis than that of penem 1, and (ii) support the kinetic observations that penem 2 is the better inhibitor (kinact/Km = 6.5 ± 0.6 μM−1 s−1). We conclude that KPC-2 is unique among class A β-lactamases in being able to readily hydrolyze clavulanic acid, sulbactam, and tazobactam. In contrast, penem-type β-lactamase inhibitors, by exhibiting unique active site chemistry, may serve as an important scaffold for future development and offer an attractive alternative to our current β-lactamase inhibitors.
Journal of Clinical Investigation | 1991
Sherry L. Abboud; Christopher R. Bethel; David C. Aron
Insulin-like growth factor I (IGF-I) stimulates hematopoiesis. We examined whether bone marrow stromal cells synthesize IGF-I. Secretion of IGF-I immunoreactivity by cells from TC-1 murine bone marrow stromal cells was time-dependent and inhibited by cycloheximide. Gel filtration chromatography under denaturing conditions of TC-1 conditioned medium demonstrated two major peaks of apparent IGF-I immunoreactivity with molecular weights of approximately 7.5-8.0 kD, the size of native IGF-I, and greater than 25 kD. Expression of IGF-I mRNA was identified by both RNase protection assay and reverse transcription/polymerase chain reaction. To determine whether the greater than 25-kD species identified by RIA possessed IGF-binding activity, a potential cause of artifactual IGF-I immunoreactivity, charcoal adsorption assay of these gel filtration fractions was performed. The peak of IGF-binding activity coeluted with apparent IGF-I immunoreactivity suggesting that TC-1 cells secrete IGF-binding protein(s). Unfractionated conditioned medium exhibited linear dose-dependent increase in specific binding of [125I]-IGF-I with a pattern of displacement (IGF-I and IGF-II much greater than insulin) characteristic of IGF-binding proteins. Western ligand analysis of conditioned medium showed three IGF-I binding species of approximately 31, 38, and 40 kD. These data indicate that TC-1 bone marrow stromal cells synthesize and secrete IGF-I and IGF-binding proteins and constitute a useful model system to study their regulation and role in hematopoiesis.
Antimicrobial Agents and Chemotherapy | 2008
Andrea Endimiani; Lenore L. Carias; Andrea M. Hujer; Christopher R. Bethel; Kristine M. Hujer; Federico Perez; Rebecca A. Hutton; William R. Fox; Geraldine S. Hall; Michael R. Jacobs; David L. Paterson; Louis B. Rice; Stephen G. Jenkins; Fred C. Tenover; Robert A. Bonomo
ABSTRACT The presence of plasmid-mediated quinolone resistance genes [i.e., qnrA, qnrB, qnrS, aac(6′)-Ib-cr, and qepA] was evaluated among 42 blaKPC-containing Klebsiella pneumoniae isolates collected in the eastern United States. One isolate carried the blaKPC-3 and qnrB19 genes on the same conjugative plasmid, whereas another carried the blaKPC-3 and qnrA1 genes on separate plasmids.
Antimicrobial Agents and Chemotherapy | 2006
Dóra Szabó; Fernanda P. Silveira; Andrea M. Hujer; Robert A. Bonomo; Kristine M. Hujer; Jane W. Marsh; Christopher R. Bethel; Yohei Doi; Kathleen Deeley; David L. Paterson
ABSTRACT We investigated ertapenem-susceptible and -resistant extended-spectrum β-lactamase-producing Enterobacter cloacae isolates obtained from the same patient. Gene transcription of OmpD and OmpF was diminished in the ertapenem-resistant isolate. An efflux pump inhibitor decreased the MICs of ertapenem in the resistant strain, suggesting a potential role of efflux pumps in ertapenem resistance.
Journal of Biological Chemistry | 2006
Kimberly A. Reynolds; Jodi M. Thomson; Kevin D. Corbett; Christopher R. Bethel; James M. Berger; Jack F. Kirsch; Robert A. Bonomo; Tracy M. Handel
β-Lactamase inhibitor protein (BLIP) binds a variety of class A β-lactamases with affinities ranging from micromolar to picomolar. Whereas the TEM-1 and SHV-1 β-lactamases are almost structurally identical, BLIP binds TEM-1 ∼1000-fold tighter than SHV-1. Determining the underlying source of this affinity difference is important for understanding the molecular basis of β-lactamase inhibition and mechanisms of protein-protein interface specificity and affinity. Here we present the 1.6Å resolution crystal structure of SHV-1 ·BLIP. In addition, a point mutation was identified, SHV D104E, that increases SHV ·BLIP binding affinity from micromolar to nanomolar. Comparison of the SHV-1 ·BLIP structure with the published TEM-1 ·BLIP structure suggests that the increased volume of Glu-104 stabilizes a key binding loop in the interface. Solution of the 1.8Å SHV D104K ·BLIP crystal structure identifies a novel conformation in which this binding loop is removed from the interface. Using these structural data, we evaluated the ability of EGAD, a program developed for computational protein design, to calculate changes in the stability of mutant β-lactamase ·BLIP complexes. Changes in binding affinity were calculated within an error of 1.6 kcal/mol of the experimental values for 112 mutations at the TEM-1 ·BLIP interface and within an error of 2.2 kcal/mol for 24 mutations at the SHV-1 ·BLIP interface. The reasonable success of EGAD in predicting changes in interface stability is a promising step toward understanding the stability of the β-lactamase ·BLIP complexes and computationally assisted design of tight binding BLIP variants.
Journal of Clinical Microbiology | 2010
Andrea Endimiani; Federico Perez; Anne Windau; Caryn E. Good; Yuvraj Choudhary; Andrea M. Hujer; Christopher R. Bethel; Robert A. Bonomo; Michael R. Jacobs
ABSTRACT We studied the accuracy of various susceptibility testing methods, including the 2009, 2010, and updated 2010 CLSI recommendations, to identify Klebsiella pneumoniae isolates with reduced susceptibility to carbapenems associated with different mechanisms of resistance. Forty-three wild-type (WT) strains, 42 extended-spectrum β-lactamase (ESBL) producers, 18 ESBL producers with outer membrane porin protein loss (ESBL/Omp strains), and 42 bla KPC-possessing K. pneumoniae (KPC-Kp) isolates were evaluated. Imipenem (IPM), meropenem (MEM), ertapenem (ERT), and doripenem (DOR) were tested by broth microdilution (BMD), Etest, and disk diffusion (DD), and the modified Hodge test (MHT) was performed using IPM and MEM disks. Results were interpreted according to original as well as recently updated interpretative criteria. MHT was positive for all 42 KPC-Kp isolates and 10 of 18 ESBL/Omp strains and therefore had poor specificity in differentiating between KPC-Kp and ESBL/Omp isolates. Based on the updated CLSI standards, phenotypic susceptibility testing by BMD and DD differentiated most carbapenem-susceptible from carbapenem-nonsusceptible K. pneumoniae isolates without the need for MHT, while the Etest method characterized many KPC-Kp isolates as susceptible, and breakpoints may need to be lowered for this method. However, both the original and updated CLSI criteria do not adequately differentiate between isolates in the KPC-Kp group, which are unlikely to respond to carbapenem therapy, and those in the ESBL/Omp group, which are likely to respond to carbapenem therapy if MICs are within pharmacokinetic/pharmacodynamic targets. Further studies are required to determine if there is a clinical need to differentiate between KPC-Kp and ESBL/Omp groups.
Journal of Biological Chemistry | 2003
Marion S. Helfand; Christopher R. Bethel; Andrea M. Hujer; Kristine M. Hujer; Vernon E. Anderson; Robert A. Bonomo
Bacterial resistance to β-lactam/β-lactamase inhibitor combinations by single amino acid mutations in class A β-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A β-lactamases, alterations at Ser-130 confer resistance to inactivation by the β-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 β-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G β-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G β-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 μm; S130G, 46.5 μm) and tazobactam (SHV-1, 0.07 μm; S130G, 4.2 μm) were observed. In contrast, the kinacts of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for β-lactams and β-lactamase inhibitors. These results underscore the mechanistic versatility of class A β-lactamases and have implications for the design of novel β-lactamase inhibitors.
Journal of Biological Chemistry | 2009
Priyaranjan Pattanaik; Christopher R. Bethel; Andrea M. Hujer; Kristine M. Hujer; Anne M. Distler; Magdalena A. Taracila; Vernon E. Anderson; Thomas R. Fritsche; Ronald N. Jones; Sundar Ram Reddy Pagadala; Focco van den Akker; John D. Buynak; Robert A. Bonomo
In an effort to devise strategies for overcoming bacterial β-lactamases, we studied LN-1-255, a 6-alkylidene-2′-substituted penicillin sulfone inhibitor. By possessing a catecholic functionality that resembles a natural bacterial siderophore, LN-1-255 is unique among β-lactamase inhibitors. LN-1-255 combined with piperacillin was more potent against Escherichia coli DH10B strains bearing blaSHV extended-spectrum and inhibitor-resistant β-lactamases than an equivalent amount of tazobactam and piperacillin. In addition, LN-1-255 significantly enhanced the activity of ceftazidime and cefpirome against extended-spectrum cephalosporin and Sme-1 containing carbapenem-resistant clinical strains. LN-1-255 inhibited SHV-1 and SHV-2 β-lactamases with nm affinity (KI = 110 ± 10 and 100 ± 10 nm, respectively). When LN-1-255 inactivated SHV β-lactamases, a single intermediate was detected by mass spectrometry. The crystal structure of LN-1-255 in complex with SHV-1 was determined at 1.55Å resolution. Interestingly, this novel inhibitor forms a bicyclic aromatic intermediate with its carbonyl oxygen pointing out of the oxyanion hole and forming hydrogen bonds with Lys-234 and Ser-130 in the active site. Electron density for the “tail” of LN-1-255 is less ordered and modeled in two conformations. Both conformations have the LN-1-255 carboxyl group interacting with Arg-244, yet the remaining tails of the two conformations diverge. The observed presence of the bicyclic aromatic intermediate with its carbonyl oxygen positioned outside of the oxyanion hole provides a rationale for the stability of this inhibitory intermediate. The 2′-substituted penicillin sulfone, LN-1-255, is proving to be an important lead compound for novel β-lactamase inhibitor design.