Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Burns is active.

Publication


Featured researches published by Christopher R. Burns.


The Astronomical Journal | 2010

The Carnegie Supernova Project: Analysis of the First Sample of Low-Redshift Type-Ia Supernovae

Gaston Folatelli; Mark M. Phillips; Christopher R. Burns; Carlos Contreras; Mario Hamuy; Wendy L. Freedman; S. E. Persson; Maximilian D. Stritzinger; Nicholas B. Suntzeff; Kevin Krisciunas; Luis Boldt; Sergio Gonzalez; Wojtek Krzeminski; Nidia I. Morrell; M. Roth; Francisco Salgado; Barry F. Madore; David C. Murphy; P. Wyatt; Weidong Li; Alexei V. Filippenko; Nicole Miller

An analysis of the first set of low-redshift (z < 0.08) Type Ia supernovae (SNe Ia) monitored by the Carnegie Supernova Project between 2004 and 2006 is presented. The data consist of well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs ) light curves in a well-understood photometric system. Methods are described for deriving light-curve parameters, and for building template light curves which are used to fit SN Ia data in the ugriBVYJH bands. The intrinsic colors at maximum light are calibrated using a subsample of supernovae (SNe) assumed to have suffered little or no reddening, enabling color excesses to be estimated for the full sample. The optical-NIR color excesses allow the properties of the reddening law in the host galaxies to be studied. A low average value of the total-to-selective absorption coefficient, RV 1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe (SN 2005A and SN 2006X) in the sample are excluded, a value RV 3.2 is obtained, similar to the standard value for the Galaxy. The red colors of these two events are well matched by a model where multiple scattering of photons by circumstellar dust steepens the effective extinction law. The absolute peak magnitudes of the SNe are studied in all bands using a two-parameter linear fit to the decline rates and the colors at maximum light, or alternatively, the color excesses. In both cases, similar results are obtained with dispersions in absolute magnitudes of 0.12-0.16?mag, depending on the specific filter-color combination. In contrast to the results obtained from the comparison of the color excesses, these fits of absolute magnitude give RV 1-2 when the dispersion is minimized, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the normal interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram for the best-observed subsample of SNe is produced by combining the results of the fits of absolute magnitude versus decline rate and color excess for each filter. The resulting scatter of 0.12 mag appears to be limited by the peculiar velocities of the host galaxies as evidenced by the strong correlation between the distance-modulus residuals observed in the individual filters. The implication is that the actual precision of SNe Ia distances is 3%-4%.


Publications of the Astronomical Society of the Pacific | 2007

The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations?

Mark M. Phillips; Weidong Li; Joshua A. Frieman; Sergei I. Blinnikov; D. L. DePoy; Jose Luis Palacio Prieto; Peter A. Milne; Carlos Contreras; Gaston Folatelli; Nidia I. Morrell; Mario Hamuy; Nicholas B. Suntzeff; M. Roth; Sergio Gonzalez; Wojtek Krzeminski; Alexei V. Filippenko; Wendy L. Freedman; Ryan Chornock; Saurabh W. Jha; Barry F. Madore; S. E. Persson; Christopher R. Burns; P. Wyatt; David C. Murphy; Ryan J. Foley; Mohan Ganeshalingam; F. J. D. Serduke; Kevin Krisciunas; Bruce A. Bassett; Andrew Cameron Becker

ABSTRACT We present extensive \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape


The Astronomical Journal | 2010

THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

Maximilian D. Stritzinger; Mark M. Phillips; S Luis Boldt; Christopher R. Burns; Abdo Campillay; Carlos Contreras; Sergio Gonzalez; Gaston Folatelli; Nidia I. Morrell; Wojtek Krzeminski; M. Roth; Francisco Salgado; D. L. DePoy; Mario Hamuy; Wendy L. Freedman; Barry F. Madore; J. L. Marshall; S. E. Persson; Jean-Philippe Rheault; Nicholas B. Suntzeff; S. Villanueva; Weidong Li; Alexei V. Filippenko

u^{\prime }g^{\prime }r^{\prime }i^{\prime }BVRIYJHK_{s}


The Astrophysical Journal | 2009

THE CARNEGIE SUPERNOVA PROJECT: FIRST NEAR-INFRARED HUBBLE DIAGRAM TO z ∼ 0.7

Wendy L. Freedman; Christopher R. Burns; Mark M. Phillips; Pamela Wyatt; S. E. Persson; Barry F. Madore; Carlos Contreras; Gaston Folatelli; E. Sergio Gonzalez; Mario Hamuy; E. Y. Hsiao; Daniel D. Kelson; Nidia I. Morrell; David C. Murphy; M. Roth; Maximilian D. Stritzinger; Laura Sturch; Nick B. Suntzeff; Pierre Astier; C. Balland; Bruce A. Bassett; Luis Boldt; R. G. Carlberg; A. Conley; Joshua A. Frieman; Peter Marcus Garnavich; J. Guy; D. Hardin; D. Andrew Howell; Richard Kessler

\end{document} photometry and optical spectroscopy of the Type Ia supernova (SN) 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called “the most peculiar known Type Ia supernova.” Both supernovae exhibited high‐ionization SN 1991T–like premaximum spectra, yet low peak luminosities like that of SN 1991bg. The spectra reveal th...


The Astronomical Journal | 2011

The Carnegie Supernova Project: Light Curve Fitting with SNooPy

Christopher R. Burns; Maximilian D. Stritzinger; Mark M. Phillips; ShiAnne Kattner; S. E. Persson; Barry F. Madore; Wendy L. Freedman; Luis Boldt; Abdo Campillay; Carlos Contreras; Gaston Folatelli; Sergio Gonzalez; Wojtek Krzeminski; Nidia I. Morrell; Francisco Salgado; Nicholas B. Suntzeff

The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (Y JHKs ) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.


Astronomy and Astrophysics | 2009

The normal Type Ia SN 2003hv out to very late phases

G. Leloudas; Maximilian D. Stritzinger; Jesper Sollerman; Christopher R. Burns; Cecilia Kozma; Kevin Krisciunas; Justyn R. Maund; Peter A. Milne; A. V. Filippenko; Claes Fransson; Mohan Ganeshalingam; Mario Hamuy; Weidong Li; Mark M. Phillips; Brian Paul Schmidt; J. Skottfelt; S. Taubenberger; Luis Boldt; J. P. U. Fynbo; Luis González; Maria Elena Salvo; Joanna Elizabeth Thomas-Osip

The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the universe. The CSP differs from other projects to date in its goal of providing an I-band rest-frame Hubble diagram. Here, we present the first results from near-infrared observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 <z < 0.7. We combine these results with those from the low-redshift CSP at z < 0.1. In this paper, we describe the overall goals of this long-term program, the observing strategy, data reduction procedures, and treatment of systematic uncertainties. We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia, and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the universe is accelerating. When combined with independent results from baryon acoustic oscillations, these data yield Ω m = 0.27 ± 0.02(statistical) and ΩDE = 0.76 ± 0.13(statistical) ± 0.09(systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, w (with no time dependence), assume a flat geometry, and combine with baryon acoustic oscillations, we find that w = –1.05 ± 0.13(statistical) ± 0.09(systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (RV = 1.8) than that in the Milky Way (where RV = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia, independent of the decline rate. Understanding and disentangling these effects is critical for minimizing the systematic uncertainties in future SN Ia cosmology studies.


The Astrophysical Journal | 2012

LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

Ryan J. Foley; Joshua D. Simon; Christopher R. Burns; Avishay Gal-Yam; Mario Hamuy; Robert P. Kirshner; Nidia I. Morrell; Mark M. Phillips; Gregory Alan Shields; Assaf Sternberg

In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.


Astronomy and Astrophysics | 2013

Carnegie Supernova Project: Observations of Type IIn supernovae

F. Taddia; Maximilian D. Stritzinger; Jesper Sollerman; Mark M. Phillips; J. P. Anderson; Luis Boldt; Abdo Campillay; Sergio Castellón; Carlos Contreras; Gaston Folatelli; Mario Hamuy; E. Heinrich-Josties; Wojtek Krzeminski; Nidia I. Morrell; Christopher R. Burns; Wendy L. Freedman; Barry F. Madore; S. E. Persson; Nicholas B. Suntzeff

Aims. We study a thermonuclear supernova (SN), emphasizing very late phases. Methods. An extensive dataset for SN 2003hv that covers the flux evolution from maximum light to day +786 is presented. This includes 82 epochs of optical imaging, 24 epochs of near-infrared (NIR) imaging, and 10 epochs of optical spectroscopy. These data are combined with published nebular-phase IR spectra, and the observations are compared to model light curves and synthetic nebular spectra. Results. SN 2003hv is a normal Type Ia supernova (SN Ia) with photometric and spectroscopic properties consistent with its rarely observed B-band decline-rate parameter, Δm15(B) = 1.61 ± 0.02. The blueshift of the most isolated [Fe ii] lines in the nebular-phase optical spectrum appears consistent with those observed in the IR at similar epochs. At late times there is a prevalent color evolution from the optical toward the NIR bands. We present the latest-ever detection of a SN Ia in the NIR in Hubble Space Telescope images. The study of the ultraviolet/optical/infrared (UVOIR) light curve reveals that a substantial fraction of the flux is “missing” at late times. Between 300 and 700 days past maximum brightness, the UVOIR light curve declines linearly following the decay of radioactive 56 Co, assuming full and instantaneous positron trapping. At 700 days we detect a possible slowdown of the decline in optical-bands, mainly in the V-band. Conclusions. The data are incompatible with a dramatic infrared catastrophe (IRC). However, the idea that an IRC occurred in the densest regions before 350 days can explain the missing flux from the UVOIR wavelengths and the flat-topped profiles in the NIR. We argue that such a scenario is possible if the ejecta are clumpy. The observations suggest that positrons are most likely trapped in the ejecta.


The Astronomical Journal | 2008

A New Distance to The Antennae Galaxies (NGC 4038/39) Based on the Type Ia Supernova 2007sr

Francois Schweizer; Christopher R. Burns; Barry F. Madore; Violet Mager; Mark M. Phillips; Wendy L. Freedman; Luis Boldt; Carlos Contreras; Gaston Folatelli; Sergio Gonzalez; Mario Hamuy; Wojtek Krzeminski; Nidia I. Morrell; S. E. Persson; M. Roth; Maximilian D. Stritzinger

Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.


The Astrophysical Journal | 2014

EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82

G. H. Marion; David J. Sand; E. Y. Hsiao; D. P. K. Banerjee; S. Valenti; Maximilian D. Stritzinger; Jozsef Vinko; Vishal Joshi; V. Venkataraman; N. M. Ashok; Rahman Amanullah; Richard P. Binzel; John J. Bochanski; G. L. Bryngelson; Christopher R. Burns; D. Drozdov; S. K. Fieber-Beyer; Melissa Lynn Graham; D. A. Howell; Joel Johansson; Robert P. Kirshner; Peter A. Milne; Jerod T. Parrent; Jeffrey M. Silverman; Ronald Joe Vervack; J. C. Wheeler

Supernovae (SNe) are the final stage in the life of massive stars. Their explosion unbinds the progenitor star revealing its inner layers. The SN ejecta interact with the circumstellar material (CSM), providing further information on the progenitor star.In this work we present the study of rare SN subtypes, aiming to investigate their observational and physical properties and those of their progenitor stars.These studies include the analysis of SN samples as well as that of single objects.Two main SN classes are discussed: radioactively-powered events and SNe interacting with their CSM.Within the first group, we investigated the rare (~1% of core-collapse SNe) family of SN 1987A-like events. These SNe are found to be the explosion of compact, hydrogen-rich blue supergiant (BSG) stars, and to occur mainly in moderately low metallicity environs. We also studied a sample of 20 stripped-envelope (SE) SNe, which are also powered by the decay of radioactive 56Ni. These SNe are the result of the core-collapse of massive, hydrogen or even helium-poor stars stripped of their outer envelopes by line-driven winds and/or by the accretion onto companion stars.We investigated the differences among the early-time light curves of the subtypes forming the SE SN group (IIb, Ib, Ic, Ic-BL) and found that in all of them the 56Ni is strongly mixed out in the ejecta. This result suggests that the difference between helium-poor and helium-rich SNe is due to an actual lack of helium in SNe Ic and Ic-BL rather than to a different degree of 56Ni mixing.Our work on CSM-interacting SNe include the study of a sample of SNe IIn, i.e. core-collapse SNe interacting with hydrogen-rich CSM, and the analysis of SN 2008J, a particularly rare event which we interpreted as the interaction of a thermonuclear SN Ia with a thick hydrogen-rich CSM. Spectral analysis of the SN IIn sample suggests that these SNe are likely to be the explosion of luminous blue variable stars (LBVs), although other channels are not excluded.

Collaboration


Dive into the Christopher R. Burns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Y. Hsiao

Florida State University

View shared research outputs
Top Co-Authors

Avatar

S. E. Persson

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry F. Madore

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge