Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Chin is active.

Publication


Featured researches published by Christopher R. Chin.


Nature | 2012

IFITM3 restricts the morbidity and mortality associated with influenza

Aaron R. Everitt; Simon Clare; Thomas Pertel; Sinu P. John; Rachael S. Wash; Sarah E. Smith; Christopher R. Chin; Eric M. Feeley; Jennifer S. Sims; David J. Adams; Helen Wise; Leanne Kane; David Goulding; Paul Digard; Verneri Anttila; J. Kenneth Baillie; Timothy S. Walsh; David A. Hume; Aarno Palotie; Yali Xue; Vincenza Colonna; Chris Tyler-Smith; Jake Dunning; Stephen B. Gordon; Rosalind L. Smyth; Peter J. M. Openshaw; Gordon Dougan; Abraham L. Brass; Paul Kellam

The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins’ in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 ‘Spanish’ influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.


PLOS Pathogens | 2011

IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

Eric M. Feeley; Jennifer S. Sims; Sinu P. John; Christopher R. Chin; Thomas Pertel; Li-Mei Chen; Gaurav D. Gaiha; Bethany J. Ryan; Ruben O. Donis; Stephen J. Elledge; Abraham L. Brass

To replicate, viruses must gain access to the host cells resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3s actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune systems neutralization of a diverse array of threats.


Cell Metabolism | 2016

Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer

Shawn M. Davidson; Thales Papagiannakopoulos; Benjamin A. Olenchock; Julia E. Heyman; Mark A. Keibler; Alba Luengo; Matthew R. Bauer; Abhishek K. Jha; James P. O’Brien; Kerry A. Pierce; Dan Y. Gui; Lucas B. Sullivan; Thomas M. Wasylenko; Lakshmipriya Subbaraj; Christopher R. Chin; Gregory Stephanopolous; Bryan T. Mott; Tyler Jacks; Clary B. Clish; Matthew G. Vander Heiden

Cultured cells convert glucose to lactate, and glutamine is the major source of tricarboxylic acid (TCA)-cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells.


PLOS Pathogens | 2014

IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion

Tanay M. Desai; Mariana Marin; Christopher R. Chin; George Savidis; Abraham L. Brass; Gregory B. Melikyan

Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3s ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes.


Science | 2016

Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers

Jared R. Mayers; Margaret E. Torrence; Laura V. Danai; Thales Papagiannakopoulos; Shawn M. Davidson; Matthew R. Bauer; Allison N. Lau; Brian W. Ji; Purushottam D. Dixit; Aaron M. Hosios; Alexander Muir; Christopher R. Chin; Elizaveta Freinkman; Tyler Jacks; Brian M. Wolpin; Dennis Vitkup; Matthew G. Vander Heiden

Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non–small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.


Journal of Molecular Biology | 2013

IFITMs restrict the replication of multiple pathogenic viruses

Jill M. Perreira; Christopher R. Chin; Eric M. Feeley; Abraham L. Brass

Abstract The interferon-inducible transmembrane protein (IFITM) family inhibits a growing number of pathogenic viruses, among them influenza A virus, dengue virus, hepatitis C virus, and Ebola virus. This review covers recent developments in our understanding of the IFITMs molecular determinants, potential mechanisms of action, and impact on pathogenesis.


Journal of Virology | 2013

The CD225 Domain of IFITM3 Is Required for both IFITM Protein Association and Inhibition of Influenza A Virus and Dengue Virus Replication

Sinu P. John; Christopher R. Chin; Jill M. Perreira; Eric M. Feeley; Aaron M. Aker; George Savidis; Sarah E. Smith; Andrew Elia; Aaron R. Everitt; Mehul Vora; Thomas Pertel; Stephen J. Elledge; Paul Kellam; Abraham L. Brass

ABSTRACT The interferon-induced transmembrane protein 3 (IFITM3) gene is an interferon-stimulated gene that inhibits the replication of multiple pathogenic viruses in vitro and in vivo. IFITM3 is a member of a large protein superfamily, whose members share a functionally undefined area of high amino acid conservation, the CD225 domain. We performed mutational analyses of IFITM3 and identified multiple residues within the CD225 domain, consisting of the first intramembrane domain (intramembrane domain 1 [IM1]) and a conserved intracellular loop (CIL), that are required for restriction of both influenza A virus (IAV) and dengue virus (DENV) infection in vitro. Two phenylalanines within IM1 (F75 and F78) also mediate a physical association between IFITM proteins, and the loss of this interaction decreases IFITM3-mediated restriction. By extension, similar IM1-mediated associations may contribute to the functions of additional members of the CD225 domain family. IFITM3s distal N-terminal domain is also needed for full antiviral activity, including a tyrosine (Y20), whose alteration results in mislocalization of a portion of IFITM3 to the cell periphery and surface. Comparative analyses demonstrate that similar molecular determinants are needed for IFITM3s restriction of both IAV and DENV. However, a portion of the CIL including Y99 and R87 is preferentially needed for inhibition of the orthomyxovirus. Several IFITM3 proteins engineered with rare single-nucleotide polymorphisms demonstrated reduced expression or mislocalization, and these events were associated with enhanced viral replication in vitro, suggesting that possessing such alleles may impact an individuals risk for viral infection. On the basis of this and other data, we propose a model for IFITM3-mediated restriction.


Journal of Biological Chemistry | 2013

Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry.

Amanda A. Anafu; Christopher H. Bowen; Christopher R. Chin; Abraham L. Brass; Geoffrey H. Holm

Background: The interferon-stimulated gene (ISG) IFITM3 restricts endosomal entry of enveloped viruses. Results: IFITM3 also restricts entry of reovirus, a nonenveloped virus. Conclusion: IFITM3 alters endosomal function, either by delaying acidification or modulating proteolytic activity. Significance: IFITM3 may restrict other clinically relevant nonenveloped viruses that require endosomes for entry. Reoviruses are double-stranded RNA viruses that infect the mammalian respiratory and gastrointestinal tract. Reovirus infection elicits production of type I interferons (IFNs), which trigger antiviral pathways through the induction of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified, the functions of many of these genes are unknown. The interferon-inducible transmembrane (IFITM) proteins are one class of ISGs that restrict the cell entry of some enveloped viruses, including influenza A virus. One family member, IFITM3, localizes to late endosomes, where reoviruses undergo proteolytic disassembly; therefore, we sought to determine whether IFITM3 also restricts reovirus entry. IFITM3-expressing cell lines were less susceptible to infection by reovirus, as they exhibited significantly lower percentages of infected cells in comparison to control cells. Reovirus replication was also significantly reduced in IFITM3-expressing cells. Additionally, cells expressing an shRNA targeting IFITM3 exhibited a smaller decrease in infection after IFN treatment than the control cells, indicating that endogenous IFITM3 restricts reovirus infection. However, IFITM3 did not restrict entry of reovirus infectious subvirion particles (ISVPs), which do not require endosomal proteolysis, indicating that restriction occurs in the endocytic pathway. Proteolysis of outer capsid protein μ1 was delayed in IFITM3-expressing cells in comparison to control cells, suggesting that IFITM3 modulates the function of late endosomal compartments either by reducing the activity of endosomal proteases or delaying the proteolytic processing of virions. These data provide the first evidence that IFITM3 restricts infection by a nonenveloped virus and suggest that IFITM3 targets an increasing number of viruses through a shared requirement for endosomes during cell entry.


Nature Medicine | 2017

Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors

Shawn M. Davidson; Oliver Jonas; Mark A. Keibler; Han Wei Hou; Alba Luengo; Jared R. Mayers; Jeffrey Wyckoff; Amanda M. Del Rosario; Matthew Whitman; Christopher R. Chin; Kendall Janine Condon; Alex Lammers; Katherine A Kellersberger; Brian K Stall; Gregory Stephanopoulos; Dafna Bar-Sagi; Jongyoon Han; Joshua D. Rabinowitz; Michael J. Cima; Robert Langer; Matthew G. Vander Heiden

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.


Cell Reports | 2013

Amphotericin B Increases Influenza A Virus Infection by Preventing IFITM3-Mediated Restriction

Tsai-Yu Lin; Christopher R. Chin; Aaron R. Everitt; Simon Clare; Jill M. Perreira; George Savidis; Aaron M. Aker; Sinu P. John; David Sarlah; Erick M. Carreira; Stephen J. Elledge; Paul Kellam; Abraham L. Brass

Summary The IFITMs inhibit influenza A virus (IAV) replication in vitro and in vivo. Here, we establish that the antimycotic heptaen, amphotericin B (AmphoB), prevents IFITM3-mediated restriction of IAV, thereby increasing viral replication. Consistent with its neutralization of IFITM3, a clinical preparation of AmphoB, AmBisome, reduces the majority of interferon’s protective effect against IAV in vitro. Mechanistic studies reveal that IFITM1 decreases host-membrane fluidity, suggesting both a possible mechanism for IFITM-mediated restriction and its negation by AmphoB. Notably, we reveal that mice treated with AmBisome succumbed to a normally mild IAV infection, similar to animals deficient in Ifitm3. Therefore, patients receiving antifungal therapy with clinical preparations of AmphoB may be functionally immunocompromised and thus more vulnerable to influenza, as well as other IFITM3-restricted viral infections.

Collaboration


Dive into the Christopher R. Chin's collaboration.

Top Co-Authors

Avatar

Abraham L. Brass

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

George Savidis

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Sinu P. John

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Feeley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jill M. Perreira

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Elledge

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Aaron M. Aker

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge