Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Erwin is active.

Publication


Featured researches published by Christopher R. Erwin.


Journal of Gastrointestinal Surgery | 1998

Enterocyte apoptosis is increased following small bowel resection

Michael A. Helmrath; Christopher R. Erwin; Cathy E. Shin; Brad W. Warner

The intestinal mucosa is in a steady state of turnover as the rate of cellular proliferation is balanced by the rate of cell death. Although it is accepted that adaptation after small bowel resection (SBR) results in increased proliferation, its effect on apoptosis is not known. The purpose of this study was to determine the effect of adaptation following SBR on rates of enterocyte apoptosis. Male ICR mice underwent either 50% proximal SBR or sham operation (bowel transection/reanastomosis). After 12 and 24 hours, and 3 and 7 days, rates of proliferation were measured in the ileum as the percentage of crypt cells incorporating bromodeoxyuridine. Apoptosis was quantitated by end labeling of DNA strand breaks and propidium iodide staining of the number of apoptotic bodies per crypt and villus. Significant increases in enterocyte proliferation (30% to 40%) as well as apoptosis (57% to 87%) occurred at all time points following SBR when compared with sham-operated mice. Adaptation following SBR increases both the rate of enterocyte proliferation and the rate of apoptosis. Understanding the pathophysiology of intestinal adaptation and therapeutic interventions designed to augment this important response will require complete characterization of their effects on both proliferation and apoptosis.


Journal of Pediatric Surgery | 2000

Diminished epidermal growth factor levels in infants with necrotizing enterocolitis

Cathy E. Shin; Richard A. Falcone; Lorie Stuart; Christopher R. Erwin; Brad W. Warner

BACKGROUND/PURPOSE Because epidermal growth factor (EGF) is trophic to the intestinal mucosa, and neonatal necrotizing enterocolitis (NEC) is associated with a disrupted intestinal mucosal barrier, the authors sought to determine whether diminished levels of EGF were present in infants with NEC. METHODS Saliva, serum, and urine specimens were obtained from infants with NEC during a 3-year period (February 1995 to May 1998). Control patients without NEC were chosen based on similar postnatal age and birthweight. EGF levels were determined by enzyme-linked immunosorbent assay (ELISA). Differences between groups were compared using Mann-Whitney Rank sum test with P less than .05 considered significant. Results are presented as mean values +/-SEM. RESULTS Twenty-five infants with NEC were compared with 19 control patients. Birth weight (1,616+/-238 g control v. 1,271+/-124 g NEC) and postnatal age (23+/-6 days control v. 22+/-3 days NEC) were similar. Infants with NEC had significantly lower levels of EGF in both saliva (590+/-80 pg/mL control v. 239+/-41 pg/mL NEC; P<.001) and serum (35+/-8 pg/mL control v. 5.6+/-1.9 pg/mL NEC; P<.001). Urinary EGF was also lower in the NEC group, but was not statistically significant. CONCLUSIONS Premature infants with NEC have significantly diminished levels of salivary and serum EGF. Reduced levels of this growth factor may distinguish infants at risk for NEC and play a pivotal role in the pathogenesis of the perturbed intestinal mucosal barrier that is central to this condition.


Surgery | 1998

Adaptation after small bowel resection is attenuated by sialoadenectomy: The role for endogenous epidermal growth factor ☆ ☆☆

Michael A. Helmrath; Cathy E. Shin; James W. Fox; Christopher R. Erwin; Brad W. Warner

BACKGROUND Epidermal growth factor (EGF) is likely involved during adaptation after small bowel resection (SBR) because some studies have shown enhanced adaptation by EGF administration. Because the major source of endogenous EGF in mice is the submandibular glands, we sought to determine the effect of submandibular gland excision (SAL) and luminal or systemic EGF replacement on adaptation after SBR. METHODS A 50% proximal SBR or Sham-SBR (bowel transection and reanastomosis) was performed on male C57BL/6 mice after either SAL or gland mobilization only. Additional mice underwent both SBR and SAL and then received daily EGF or saline solution by intraperitoneal or orogastric administration. At 1 week, adaptation was characterized in the ileum as changes in villus height, DNA, and protein content. RESULTS SAL significantly attenuated the increase in ileal villus height, total protein, and DNA content after SBR. Both systemic and oral EGF reversed these findings equally and significantly augmented all parameters of intestinal adaptation after SAL. CONCLUSIONS Submandibular EGF is important for the adaptive response to massive SBR. As both luminal and systemic EGF equally reversed the findings following SAL and SBR, the specific site of action for endogenous EGF during adaptation is either the luminal or basolateral surface of the enterocyte.


Microscopy Research and Technique | 2000

Epidermal growth factor is critical for intestinal adaptation following small bowel resection.

Lawrence E. Stern; Christopher R. Erwin; David P. O'Brien; Frederick S. Huang; Brad W. Warner

The loss of small intestinal mucosal surface area is a relatively common clinical situation seen in both the pediatric and adult population. The most frequent causes include mesenteric ischemia, trauma, inflammatory bowel disease, necrotizing enterocolitis, and volvulus. Following surgical resection, the remnant intestine compensates or adapts to the loss of native bowel by increasing its absorptive surface area and functional capacity. Unfortunately, many patients fail to adapt adequately, and are relegated to lifelong intravenous nutrition. Research into intestinal adaptation following small bowel resection (SBR) has evolved only recently from the gross and microscopic level to the biochemical and genetic level. As understanding of this process has increased, numerous therapeutic strategies to augment adaptation have been proposed. Epidermal growth factor (EGF) is an endogenous peptide that is secreted into the gastrointestinal tract and able to influence gut ontogeny, as well as mucosal healing. Early studies have demonstrated its ability to augment the adaptive process. Focusing on a murine model of massive intestinal loss, the morphological, structural, biochemical, and genetic changes that occur during the intestinal adaptive process will be reviewed. The role of EGF and its receptor as critical mediators of the adaptive process will be discussed. Additionally, the ability of EGF to augment intestinal proliferation and diminish programmed cell death (apoptosis) following SBR will be examined. Enhancing adaptation in a controlled manner may allow patients to transition off parenteral nutrition to enteral feeding and, thereby, normalize their lifestyle. Microsc. Res. Tech. 51:138–148, 2000.


Cancer Research | 2005

Haploinsufficiency of Atp2a2, Encoding the Sarco(endo)plasmic Reticulum Ca2+-ATPase Isoform 2 Ca2+ Pump, Predisposes Mice to Squamous Cell Tumors via a Novel Mode of Cancer Susceptibility

Vikram Prasad; Gregory P. Boivin; Marian L. Miller; Lynne H. Liu; Christopher R. Erwin; Brad W. Warner; Gary E. Shull

A null mutation in one copy of the Atp2a2 or ATP2A2 gene, encoding sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2), leads to squamous cell tumors in mice and to Darier disease in humans, a skin disorder that also involves keratinocytes. Here, we examined the time course and genetic mechanisms of tumor development in the mutant animals. Atp2a2+/- mice overexpressed keratins associated with keratinocyte hyperactivation in normal forestomachs as early as 2 months of age. By the age of 5 to 7 months, 22% of mutants had developed papillomas of the forestomach, and 89% of mutants older than 14 months had developed squamous cell papillomas and/or carcinomas, with a preponderance of the latter. Tumors occurred in regions that had keratinized epithelium and were subjected to repeated mechanical irritation. The genetic mechanism of tumorigenesis did not involve loss of heterozygosity, as tumor cells analyzed by laser capture microdissection contained the wild-type Atp2a2 allele. Furthermore, immunoblot and immunohistochemical analysis showed that tumor keratinocytes expressed the SERCA2 protein. Mutations were not observed in the ras proto-oncogenes; however, expression of wild-type ras was up-regulated, with particularly high levels of K-ras. Loss of the p53 tumor suppressor gene occurred in a single massive tumor, whereas other tumors had increased levels of p53 protein but no mutations in the p53 gene. These findings show that SERCA2 haploinsufficiency predisposes mice to tumor development via a novel mode of cancer susceptibility involving a global change in the tumorigenic potential of keratinized epithelium in Atp2a2+/- mice.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Intestinal overexpression of EGF in transgenic mice enhances adaptation after small bowel resection

Christopher R. Erwin; Michael A. Helmrath; Cathy E. Shin; Richard A. Falcone; Lawrence E. Stern; Brad W. Warner

The effect of direct intestinal overexpression of epidermal growth factor (EGF) on postresection adaptation has been investigated by the production of transgenic mouse lines. A murine pro-EGF cDNA construct was produced, and expression of the EGF construct was targeted to the small intestine with the use of the rat intestinal fatty acid-binding protein promoter. An approximately twofold increase in intestinal EGF mRNA and protein was detected in heterozygous mice. No changes in serum EGF levels were noted. Except for a slightly shortened small intestine, no other abnormal phenotype was observed. Intestinal adaptation (increases in body weight, DNA, protein content, villus height, and crypt depth) was markedly enhanced after a 50% proximal small bowel resection in transgenic mice compared with nontransgenic littermates. This transgenic mouse model permits the study of intestinal adaptation and other effects of EGF in the small intestine in a more physiological and directed manner than has been previously possible. These results endorse a direct autocrine/paracrine mechanism for EGF on enterocytes as a means to enhance adaptation.


Journal of Pediatric Surgery | 2011

Intestinal adaptation after small bowel resection in human infants.

Lucas A. McDuffie; Brian T. Bucher; Christopher R. Erwin; Derek Wakeman; Francis White; Brad W. Warner

PURPOSE In animal models, the small intestine responds to massive small bowel resection (SBR) through a compensatory process termed adaptation, characterized by increases in both villus height and crypt depth. This study seeks to determine whether similar morphologic alterations occur in humans after SBR. METHODS Clinical data and pathologic specimens of infants who had both an SBR for necrotizing enterocolitis and an ostomy takedown from 1999 to 2009 were reviewed. Small intestine mucosal morphology was compared in the same patients at the time of SBR and at the time of ostomy takedown. RESULTS For all samples, there was greater villus height (453.6 ± 20.4 vs 341.2 ± 12.4 μm, P < .0001) and crypt depth (178.6 ± 7.2 vs 152.6 ± 6 μm, P < .01) in the ostomy specimens compared with the SBR specimens. In infants with paired specimens, there was an increase of 31.7% ± 8.3% and 22.1% ± 10.0% in villus height and crypt depth, respectively. There was a significant correlation between the amount of intestine resected and the percent change in villus height (r = 0.36, P < .05). CONCLUSION Mucosal adaptation after SBR in human infants is similar to what is observed in animal models. These findings validate the use of animal models of SBR used to understand the molecular mechanisms of this important response.


Journal of Pediatric Surgery | 1998

Epidermal growth factor upregulates the expression of its own intestinal receptor after small bowel resection

Michael A Helmrath; Cathy E. Shin; Christopher R. Erwin; Brad W. Warner

BACKGROUND/PURPOSE Epidermal growth factor (EGF) binds to its enterocyte receptor and enhances intestinal adaptation after massive small bowel resection (SBR). To ascertain the mechanism for enhanced adaptation by EGF, we sought to determine the effect of EGF administration on in vivo expression of the intestinal EGF receptor after SBR. METHODS Male ICR mice underwent a 50% proximal SBR and then were assigned randomly to EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injection. After 3 days, the ileum was harvested and total protein and DNA content were measured. Northern hybridization and a ribonuclease protection assay were used to detect qualitative and quantitative expression of EGF receptor mRNA. The remaining ileum was pooled for each group and Western blotting used to determine expression of EGF receptor protein. RESULTS EGF augmented adaptation after SBR as monitored by significant increases in ileal protein (2.7+/-0.08 saline versus 3.9+/-0.17 mg/cm EGF; P<.001) and DNA (55.8+/-1.6 saline versus 104+/-8.4 microg/cm EGF; P<.001) content. Northern blotting results showed a marked (>fivefold) increase in ileal EGF receptor mRNA, which was confirmed with the ribonuclease protection assay. Administration of EGF after SBR induced a similar expression of EGF receptor protein. CONCLUSIONS EGF enhanced intestinal adaptation after SBR. This augmented response is associated with increased ileal expression of EGF receptor mRNA and protein. Increased EGF receptor expression and subsequent enhanced ligand/ receptor activity may be one important mechanism for the beneficial effect of EGF administration during intestinal adaptation.


Journal of Gastrointestinal Surgery | 2000

Effect of massive small bowel resection on the Bax/Bcl-w ratio and enterocyte apoptosis

Lawrence E. Stern; Richard A. Falcone; Christopher J. Kemp; Lorie Stuart; Christopher R. Erwin; Brad W. Warner

Following small bowel resection (SBR), the remnant intestine undergoes adaptation. Enterocyte proliferation is increased and counterbalanced by increased rates of apoptosis. To elucidate a mechanism for increased enterocyte apoptosis, this study tested the hypothesis that the ratio between pro-apoptotic Bax and pro-survival Bcl- w correlates with the apoptosis that occurs following SBR. Mice (C57B1/6; n = 76) underwent a 50% proximal SBR or sham operation. After 12 hours and 1,2,3, and 7 days, the ileum was removed, the apoptotic index (apoptotic bodies/crypt) was recorded, and the messenger RNA and protein for Bax and Bcl-w were quantified. The apoptotic index was equivalent in the sham and SBR mice at 12 hours; however, it was significantly elevated following SBR at every other day measured. The ratio of Bax to Bcl-w messenger RNA relative to sham operation increased after SBR at 24 hours, decreased by day 3, and returned to baseline levels by 1 week. The protein ratio showed an increase by day 1, which remained elevated through day 7. An augmented ratio of Bax to Bcl-w messenger RNA and protein corresponded with the increase in enterocyte apoptosis. Alterations in the expression ratio of these genes may play a role in establishing a new homeostatic set point between proliferation and apoptosis during adaptation.


Journal of Pediatric Surgery | 1998

Intestinal adaptation is enhanced by epidermal growth factor independent of increased ileal epidermal growth factor receptor expression

Michael A Helmrath; Cathy E. Shin; Christopher R. Erwin; Brad W. Warner

BACKGROUND/PURPOSE Intestinal adaptation after massive small bowel resection (SBR) is augmented by epidermal growth factor (EGF) via an unknown mechanism. We recently have observed that EGF increases the expression of EGF receptor mRNA and protein content in the remnant ileum after SBR. The purpose of this study was to determine whether the magnitude of EGF-induced receptor expression correlates with intestinal adaptation. METHODS A 50% proximal SBR or sham operation (bowel transection with reanastomosis) was performed on male ICR mice. Animals from each group were then selected randomly to receive either human recombinant EGF (150 microg/kg/d) or saline by twice daily intraperitoneal injections. The remnant ileum was harvested at 1 week, and parameters of adaptation measured as changes in protein content. Ileal EGF receptor mRNA was quantitated using a ribonuclease protection assay. Changes in the expression ileal EGF receptor protein were determined by Western blot after immunoprecipitation. Comparisons of mean values between groups was performed using analysis of variance (ANOVA) and a P value of less than .05 was considered significant. Values are presented as mean +/- SEM. RESULTS EGF was mitogenic to the ileum after sham operation as monitored by increases in ileal protein content (2.21 +/- 0.002 mg/cm Sham v 2.97 +/- 0.25 mg/cm Sham +/- EGF; P < .05). After SBR, adaptation resulted in increased ileal protein content (4.45 +/- 0.27 mg/cm), which was substantially boosted by EGF (5.98 +/- 0.39 mg/cm; P < .05). No differences were detected in ileal EGF receptor mRNA or protein expression between Sham or SBR groups that did not receive EGF. However, EGF significantly enhanced the expression of ileal EGF receptor mRNA to an equal extent after both sham and SBR (approximately threefold). The magnitude of this increase in EGF receptor protein (four- to sixfold) was similar in both EGF groups as shown by Western blotting. CONCLUSIONS Changes in ileal EGF receptor expression are not mandatory for adaptation to occur. EGF upregulates the expression of mRNA and protein for its own intestinal receptor in vivo. Because EGF-induced receptor expression was comparable after both SBR and Sham operation, the beneficial effect of EGF during adaptation is likely caused by other factors in addition to increased receptor expression.

Collaboration


Dive into the Christopher R. Erwin's collaboration.

Top Co-Authors

Avatar

Brad W. Warner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jun Guo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cathy E. Shin

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Richard A. Falcone

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Kemp

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence E. Stern

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Raphael C. Sun

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Knott

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Derek Wakeman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Russell J. Juno

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge