Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Gelino is active.

Publication


Featured researches published by Christopher R. Gelino.


Astrophysical Journal Supplement Series | 2011

The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)

J. Davy Kirkpatrick; Michael C. Cushing; Christopher R. Gelino; Roger L. Griffith; Michael F. Skrutskie; Kenneth A. Marsh; Edward L. Wright; A. Mainzer; Peter R. M. Eisenhardt; Ian S. McLean; Maggie A. Thompson; James Monie Bauer; Dominic J. Benford; C. Bridge; Sean Lake; Sara Petty; S. A. Stanford; Chao-Wei Tsai; Vanessa P. Bailey; Charles A. Beichman; Joshua S. Bloom; John J. Bochanski; Adam J. Burgasser; P. Capak; Kelle L. Cruz; Philip M. Hinz; J. Kartaltepe; Russell P. Knox; S. Manohar; Daniel Masters

We present ground-based spectroscopic verification of 6 Y dwarfs (see also Cushing et al.), 89 T dwarfs, 8 L dwarfs, and 1 M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types ≥T6, six of which have been announced earlier by Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 μm (W2) magnitude versus spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four of our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541–2250, is the closest at 2.8^(+1.3)_(–0.6) pc; if this 2.8 pc value persists after continued monitoring, WISE 1541–2250 will become the seventh closest stellar system to the Sun. Another 10 objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of ~4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from the Spitzer/Infrared Array Camera allow us to calculate proper motions and tangential velocities for roughly one-half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss constraints on both the functional form of the mass function and the low-mass limit of star formation.


The Astrophysical Journal | 2011

The discovery of y dwarfs using data from the wide-field infrared survey explorer (WISE)

Michael C. Cushing; J. Davy Kirkpatrick; Christopher R. Gelino; Roger L. Griffith; Michael F. Skrutskie; A. Mainzer; Kenneth A. Marsh; Charles A. Beichman; Adam J. Burgasser; L. Prato; Robert A. Simcoe; Mark S. Marley; Didier Saumon; Richard S. Freedman; Peter R. M. Eisenhardt; Edward L. Wright

We present the discovery of seven ultracool brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Near-infrared spectroscopy reveals deep absorption bands of H_(2)O and CH_4 that indicate all seven of the brown dwarfs have spectral types later than UGPS J072227.51–054031.2, the latest-type T dwarf currently known. The spectrum of WISEP J182831.08+265037.8 is distinct in that the heights of the J- and H-band peaks are approximately equal in units of f λ, so we identify it as the archetypal member of the Y spectral class. The spectra of at least two of the other brown dwarfs exhibit absorption on the blue wing of the H-band peak that we tentatively ascribe to NH3. These spectral morphological changes provide a clear transition between the T dwarfs and the Y dwarfs. In order to produce a smooth near-infrared spectral sequence across the T/Y dwarf transition, we have reclassified UGPS 0722–05 as the T9 spectral standard and tentatively assign WISEP J173835.52+273258.9 as the Y0 spectral standard. In total, six of the seven new brown dwarfs are classified as Y dwarfs: four are classified as Y0, one is classified as Y0 (pec?), and WISEP J1828+2650 is classified as >Y0. We have also compared the spectra to the model atmospheres of Marley and Saumon and infer that the brown dwarfs have effective temperatures ranging from 300 K to 500 K, making them the coldest spectroscopically confirmed brown dwarfs known to date.


The Astrophysical Journal | 2012

FURTHER DEFINING SPECTRAL TYPE "Y" AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

J. Davy Kirkpatrick; Christopher R. Gelino; Michael C. Cushing; Gregory N. Mace; Roger L. Griffith; Michael F. Skrutskie; Kenneth A. Marsh; Edward L. Wright; Peter R. M. Eisenhardt; Ian S. McLean; A. Mainzer; Adam J. Burgasser; C. G. Tinney; Stephen G. Parker; G. S. Salter

We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J-H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 µm) and W2 (4.6 µm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 parsecs of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < α < 0.0; however, a power-law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.


The Astrophysical Journal | 1999

Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres

Mark S. Marley; Christopher R. Gelino; Denise Catherine Stephens; Jonathan I. Lunine; Richard S. Freedman

The reflected spectra of extrasolar giant planets are primarily influenced by Rayleigh scattering, molecular absorption, and atmospheric condensates. We present model geometric albedo and phase-integral spectra and Bond albedos for planets and brown dwarfs with masses between 0.8 and 70 Jupiter masses. Rayleigh scattering predominates in the blue while molecular absorption removes most red and infrared photons. Thus cloud-free atmospheres, found on giant planets with effective temperatures exceeding about 400 K, are quite dark in reflected light beyond 0.6 μm. In cooler atmospheres, first water clouds and then other condensates provide a bright reflecting layer. Only planets with cloudy atmospheres will be detectable in reflected light beyond 1 μm. Thermal emission dominates the near-infrared for warm objects with clear atmospheres. However the presence of other condensates, not considered here, may brighten some planets in reflected near-infrared light and darken them in the blue and UV. Bond albedos, the ratio of the total reflected to incident power, are sensitive to the spectral type of the primary. Most incident photons from early-type stars will be Rayleigh scattered, while most incident photons from late-type stars will be absorbed. The Bond albedo of a given planet thus may range from 0.4 to 0.05, depending on the primary type. Condensation of a water cloud may increase the Bond albedo of a planet by up to a factor of 2. The spectra of cloudy planets are strongly influenced by poorly constrained cloud microphysical properties, particularly particle size and supersaturation. Both Bond and geometric albedos are comparatively less sensitive to variations in planet mass and effective temperature.


The Astronomical Journal | 2009

THE BROWN DWARF KINEMATICS PROJECT I. PROPER MOTIONS AND TANGENTIAL VELOCITIES FOR A LARGE SAMPLE OF LATE-TYPE M, L, AND T DWARFS

Jacqueline K. Faherty; Adam J. Burgasser; Kelle L. Cruz; Michael M. Shara; Frederick M. Walter; Christopher R. Gelino

We report proper-motion measurements for 427 late-type M, L, and T dwarfs, 332 of which have been measured for the first time. Combining these new proper motions with previously published measurements yields a sample of 841 M7-T8 dwarfs. We combined parallax measurements or calculated spectrophotometric distances, and computed tangential velocities for the entire sample. We find that kinematics for the full and volume-limited 20 pc samples are consistent with those expected for the Galactic thin disk, with no significant differences between late-type M, L, and T dwarfs. Applying an age-velocity relation we conclude that the average kinematic age of the 20 pc sample of ultracool dwarfs is older than recent kinematic estimates and more consistent with age results calculated with population synthesis models. There is a statistically distinct population of high tangential velocity sources (V tan > 100 km s^–1) whose kinematics suggest an even older population of ultracool dwarfs belonging to either the Galactic thick disk or halo. We isolate subsets of the entire sample, including low surface gravity dwarfs, unusually blue L dwarfs, and photometric outliers in J – Ks color and investigate their kinematics. We find that the spectroscopically distinct class of unusually blue L dwarfs has kinematics clearly consistent with old age, implying that high surface gravity and/or low metallicity may be relevant to their spectral properties. The low surface gravity dwarfs are kinematically younger than the overall population, and the kinematics of the red and blue ultracool dwarfs suggest ages that are younger and older than the full sample, respectively. We also present a reduced proper-motion diagram at 2MASS (Two Micron All Sky Survey) Ks for the entire population and find that a limit of HKs > 18 excludes M dwarfs from the L and T dwarf population regardless of near-infrared color, potentially enabling the identification of the coldest brown dwarfs in the absence of color information.


The Astrophysical Journal | 2008

A SAMPLE OF VERY YOUNG FIELD L DWARFS AND IMPLICATIONS FOR THE BROWN DWARF LITHIUM TEST AT EARLY AGES

J. Davy Kirkpatrick; Kelle L. Cruz; Travis S. Barman; Adam J. Burgasser; Dagny L. Looper; C. G. Tinney; Christopher R. Gelino; Patrick J. Lowrance; James Liebert; John M. Carpenter; Lynne A. Hillenbrand; John R. Stauffer

Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 303 field L dwarfs, we find observationally that 7.6% ± 1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (decl: < 0°) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, β Pictoris, and AB Doradus. We use a homogeneously observed sample of ~150 optical spectra to examine lithium strength as a function of L/T spectral type and further corroborate the trends noted by Kirkpatrick and coworkers. We use our low-gravity spectra to investigate lithium strength as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few x 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well-determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited by Kirkpatrick and coworkers that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.


The Astrophysical Journal | 2010

SpeX SPECTROSCOPY OF UNRESOLVED VERY LOW MASS BINARIES. I. IDENTIFICATION OF 17 CANDIDATE BINARIES STRADDLING THE L DWARF/T DWARF TRANSITION

Adam J. Burgasser; Kelle L. Cruz; Michael C. Cushing; Christopher R. Gelino; Dagny L. Looper; Jacqueline K. Faherty; J. Davy Kirkpatrick; I. Neill Reid

We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13,581 pairs of absolute flux-calibrated spectra, are shown to provide statistically superior fits to the spectra of our 17 candidates as compared to single templates. Ten of these candidates appear to have secondary components that are significantly brighter than their primaries over the 1.0-1.3 μm band, indicative of rapid condensate depletion at the L dwarf/T dwarf transition. Our results support prior indications of enhanced multiplicity amongst early-type T dwarfs; 53% ± 7% of the T0-T4 dwarfs in our spectral sample are found to be either resolved or unresolved (candidate) pairs, although this is consistent with an intrinsic (volume complete) brown dwarf binary fraction of only 15%. If verified, this sample of spectral binaries more than doubles the number of known L dwarf/T dwarf transition pairs, enabling a broader exploration of this poorly understood phase of brown dwarf atmospheric evolution.


The Astrophysical Journal | 2002

L Dwarf Variability: I-Band Observations

Christopher R. Gelino; Mark S. Marley; Jon A. Holtzman; Andrew S. Ackerman; Katharina Lodders

We report on the results of an I-band photometric variability survey of 18 L dwarfs. We find that seven exhibit statistically significant variations above the 95.4% confidence level with rms scatter (including photometric errors) between 0.010 and 0.083 mag. Another five targets have variability probabilities ?80%, suggesting that these are likely variable objects. Two objects display significant peaks in a CLEAN periodogram that are several times higher than the noise. The periods found for 2MASS 0746+20AB and 2MASS 1300+19 are longer than those periods likely from rotation velocity measurements, and they do not represent periodic behavior in the light curve that persists through the entire data set. These observations suggest that we are not observing the rotation modulation of a long-lived albedo feature. Instead, rapid evolution of atmospheric features is likely causing the nonperiodic variability. The remaining variable objects show no prominent features in their light curves, suggesting even more rapid evolution of atmospheric features. We argue against the existence of magnetic spots in these atmospheres and favor the idea that nonuniform condensate coverage is responsible for these variations. The magnetic Reynolds number in the atmospheres of L dwarfs is too small to support the formation of magnetic spots. In contrast, silicate and iron clouds are expected to form in the photospheres of L dwarfs. Inhomogeneities in such cloud decks and the evolution of the inhomogeneities can plausibly produce the observed photometric variations.


The Astrophysical Journal | 2013

DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

Yi Cao; Mansi M. Kasliwal; Iair Arcavi; Assaf Horesh; Paul Hancock; S. Valenti; S. Bradley Cenko; S. R. Kulkarni; Avishay Gal-Yam; Evgeny Gorbikov; Eran O. Ofek; David J. Sand; Ofer Yaron; Melissa Lynn Graham; Jeffrey M. Silverman; J. Craig Wheeler; G. H. Marion; Emma S. Walker; Paolo A. Mazzali; D. Andrew Howell; K. L. Li; Albert K. H. Kong; Joshua S. Bloom; Peter E. Nugent; Jason A. Surace; Frank J. Masci; John M. Carpenter; N. Degenaar; Christopher R. Gelino

The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M_B luminosity of −5.52 ± 0.39 mag and a B − I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10^(12) g cm^(−1). Assuming a wind velocity of 10^3 km s^(−1), we derive a progenitor mass-loss rate of 3 × 10^(−5) M☉ yr^(−1). Our observations, taken as a whole, are consistent with a Wolf–Rayet progenitor of the supernova iPTF13bvn.


The Astrophysical Journal | 2014

Initial Performance of the NEOWISE Reactivation Mission

A. Mainzer; James Monie Bauer; Roc Michael Cutri; T. Grav; Joseph R. Masiero; R. Beck; P. Clarkson; T. Conrow; J. W. Dailey; Peter R. M. Eisenhardt; B. Fabinsky; Sergio Bernabe Fajardo-Acosta; John W. Fowler; Christopher R. Gelino; Carl J. Grillmair; I. Heinrichsen; Martha Kendall; J. Davy Kirkpatrick; Fengchuan Liu; Frank J. Masci; Howard L. McCallon; C. R. Nugent; M. Papin; E. Rice; D. Royer; T. Ryan; P. Sevilla; S. Sonnett; R. Stevenson; D. B. Thompson

NASAs Wide-field Infrared Survey Explorer (WISE) spacecraft has been brought out of hibernation and has resumed surveying the sky at 3.4 and 4.6 um. The scientific objectives of the NEOWISE reactivation mission are to detect, track, and characterize near-Earth asteroids and comets. The search for minor planets resumed on December 23, 2013, and the first new near-Earth object (NEO) was discovered six days later. As an infrared survey, NEOWISE detects asteroids based on their thermal emission and is equally sensitive to high and low albedo objects; consequently, NEOWISE-discovered NEOs tend to be large and dark. Over the course of its three-year mission, NEOWISE will determine radiometrically-derived diameters and albedos for approximately 2000 NEOs and tens of thousands of Main Belt asteroids. The 32 months of hibernation have had no significant effect on the missions performance. Image quality, sensitivity, photometric and astrometric accuracy, completeness, and the rate of minor planet detections are all essentially unchanged from the prime missions post-cryogenic phase.

Collaboration


Dive into the Christopher R. Gelino's collaboration.

Top Co-Authors

Avatar

J. Davy Kirkpatrick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward L. Wright

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory N. Mace

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Charles A. Beichman

NASA Exoplanet Science Institute

View shared research outputs
Top Co-Authors

Avatar

Roger L. Griffith

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge