Christopher R. Lambert
Worcester Polytechnic Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher R. Lambert.
Analytical Biochemistry | 2011
Eftim Milkani; Christopher R. Lambert; W. Grant McGimpsey
Acetylcholinesterase (AChE) inhibitors are potentially lethal but also have applications as therapeutic drugs for neurodegenerative diseases such as Alzheimers. Enzyme inhibitor binding are difficult to be detected directly by surface plasmon resonance (SPR) due to their small molecular weight. In this article, we describe the detection of AChE inhibitor binding by SPR without the use of competitive binding or antibodies. AChE was immobilized on the gold surface of an SPR sensor through covalent attachment to a self-assembled monolayer (SAM) of a COOH-terminated alkanethiol. The activity of the immobilized protein and the surface density were determined by using a standard photometric assay. Binding of two reversible inhibitors, which are used as therapeutic drugs, was detectable by SPR without the need to further modify the surface or the use of other reagents. The binding affinities (K(A)) obtained from the fits were 3.8 × 10(3)M(-1) for neostigmine and 1.7 × 10(3)M(-1) for eserine, showing a higher affinity of the sensor for neostigmine. We believe that the SPR sensors ability to detect these inhibitors is due to conformational changes of the enzyme structure on inhibitor binding.
Analytical Chemistry | 2008
Eugene F. Douglass; Peter F. Driscoll; D.-L. Liu; Nancy A. Burnham; Christopher R. Lambert; W. Grant McGimpsey
Analytical gold electrodes were polished mechanically and electrochemically and the true area of the electrode surface was measured by quantitative oxidative/reductive cycling of the electrode. A roughness factor for each electrode was determined from the ratio of the true area to the geometric area. The roughness is fully described by a combination of microscopic roughness (up to tens of nanometers) and macroscopic roughness (on the order of hundreds of nanometers) terms. The electrodes were then derivatized with a self-assembled monolayer (SAM) of dodecanethiol or a thioalkane azacrown and characterized by impedance spectroscopy. The behavior of the electrodes was modeled with either a Helmholtz or Randles equivalent circuit (depending on the SAM used) in which the capacitance was replaced with a constant phase element. From the model, an effective capacitance and an alpha factor that quantifies the nonideality of the SAM capacitance was obtained. The effective capacitance divided by the roughness factor yields the capacitance per unit true area, which is only a function of microscopic roughness. The relationship between this capacitance and the alpha factor indicates that microscopic roughness predominantly affects the nonideality of the film while macroscopic roughness predominantly affects the magnitude of the films capacitance. Understanding the contribution of the electrode topography to the magnitude and ideality of the SAM capacitance is important in the construction of SAM-based capacitive sensors because it predicts the importance of electrode-electrode variations.
Biosensors and Bioelectronics | 2010
Eftim Milkani; Sergi Morais; Christopher R. Lambert; W. Grant McGimpsey
The detection and parallel characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface by surface plasmon resonance (SPR) is presented. A thiol modification on the probe DNA strand allowed for its attachment to the surface via self-assembly. For the hybridization of full match DNA a detection limit of 20 pM was determined. The change in SPR signal was always larger for the full match compared to the one-mismatch target DNA oligonucleotides when the mismatch was in the middle or at the proximal end of the target DNA. Hybridization conditions (buffer concentration, flow rate, and temperature) did not affect the ability of the sensor to discriminate for single nucleotide mismatches. To our knowledge this is the only work where a comparison on the surface hybridization efficiency is performed between proximal, distal, and middle mismatches and the effect of three hybridization parameters is studied with regard to the detection of single nucleotide mismatches using SPR.
Analytical Chemistry | 2006
W. Grant McGimpsey; Nantanit Wanichacheva; Christopher R. Lambert
Self-assembled monolayers (SAMs) of 21-(16-mercaptohexadecan-1-oyl)-4,7,13,16-tetraoxa-1,10,21-triazabicyclo[8.8.5]tricosane-19,23-dione were prepared on gold. Characterization of the SAMs was carried out by sessile drop contact angle, ellipsometry, grazing angle FT-IR spectroscopy, and electrochemical techniques. The cation recognition properties of the SAM were studied by cyclic voltammetry and impedance spectroscopy. The films show moderate selectivity for detection of Li+ ions in solution over K+ and Na+, with selectivity values calculated to be log K(Li+,Na+) approximately -1.30 and log K(Li+,K+) approximately -0.92. To the best of our knowledge, this is the first demonstration of a lithium sensor fabricated using self-assembled monolayer technology.
Journal of Biomedical Materials Research Part A | 2009
Katie A. Bush; P. F. Driscoll; E. R. Soto; Christopher R. Lambert; W. G. McGimpsey; George D. Pins
Precisely engineering the surface chemistry of biomaterials to modulate the adsorption and functionality of biochemical signaling molecules that direct cellular functions is critical in the development of tissue engineered scaffolds. Specifically, this study describes the use of functionalized self-assembled monolayers (SAMs) as a model system to assess the effects of biomaterial surface properties on controlling fibronectin (FN) conformation and concentration as well as keratinocyte function. By systematically analyzing FN adsorption at low and saturated surface densities, we distinguished between SAM-dependent effects of FN concentration and conformation on presenting cellular binding domains that direct cellular functions. Quantitative image analyses of immunostained samples showed that modulating the availability of the FN synergy site directly correlated with changes in keratinocyte attachment, spreading, and differentiation, through integrin-mediated signaling mechanisms. The results of this study will be used to elucidate design features that can be incorporated into dermal equivalents and percutaneous implants to enhance the rate of re-epithelialization and tissue regeneration. Furthermore, these findings indicate that SAM-based model systems are a valuable tool for designing and investigating the development of scaffolds that regulate the conformation of extracellular matrix cues and cellular functions that accelerate the rate of tissue regeneration.
Macromolecular Bioscience | 2014
Morgan M. Stanton; Johanna M. Rankenberg; Byung-Wook Park; W. Grant McGimpsey; Christopher Malcuit; Christopher R. Lambert
Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface.
Analytical Methods | 2011
Eftim Milkani; Aung M. Khaing; Sergi Morais; Christopher R. Lambert; W. Grant McGimpsey
The detection and characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface, by electrochemical impedance spectroscopy and surface plasmon resonance (SPR) is presented. A thiol modification on the probe DNA strand allowed for its attachment to the surface via self-assembly. For the hybridization of full match target DNA a detection limit of 20 pM was determined. RNA hybridization was also detectable with the same sensor, with a similar detection limit. The SPR signal generated upon hybridization of the full match was always distinguishable from the single mismatch target DNA oligonucleotides when the mismatch was in the middle or at the proximal end of the target DNA sequence. However, the response of the sensor was identical for the hybridization of the full match and the distal end mismatch. The SPR sensor described is reusable over at least 20 hybridization/regeneration cycles and is insensitive to flow rate (20-800 µL min-1) or temperature (20-60 °C). Based on the SPR response, the surface density of the probe was estimated to be at least 4.3 × 1012 molecules per cm2.
Photochemistry and Photobiology | 2006
Nantanit Wanichecheva; John S. Benco; Christopher R. Lambert; W. Grant McGimpsey
Abstract The macrobicyclic molecule, 21-(9-anthrylmethyl)-4,17,13,16-tetraoxa-1,10,21-triazabicyclo [8.8.5]tricosane-19,23-dione, I, was designed, synthesized and characterized as a fluoroionophore for the selective, optical detection of lithium ions. Compound I is based on a bridged diazacrown structure, which provides a semirigid binding framework. Binding takes place by electrostatic interactions between the oxygen atoms of the crown and the cation and is transduced to fluorescence emission from an attached anthracene fluorophore. In a 75:25 dichloromethane/tetrahydrofuran solvent mixture, I acts as an intramolecular electron transfer “off–on” fluorescence switch, exhibiting a greater than 190-fold enhancement in fluorescence emission intensity in the presence of lithium ions. The relative selectivity of I for lithium ions over sodium, potassium and ammonium ions was found to be log KLi+,Na+ ∼ −3.36, log KLi+,K+ ∼ −1.77 and log KLi+,NH4+ ∼ −2.78.
Journal of Biomedical Materials Research Part B | 2015
Morgan M. Stanton; Allegra Parrillo; Gawain Thomas; W. Grant McGimpsey; Qi Wen; Robert M. Bellin; Christopher R. Lambert
The immediate physical and chemical surroundings of cells provide important biochemical cues for their behavior. Designing and tailoring biomaterials for controlled cell signaling and extracellular matrix (ECM) can be difficult due to the complexity of the cell-surface relationship. To address this issue, our research has led to the development of a polydimethylsiloxane (PDMS) scaffold with defined microtopography and chemistry for surface driven ECM assembly. When human fibroblasts were cultured on this microtextured PDMS with 2-6 µm wide vertical features, significant changes in morphology, adhesion, actin cytoskeleton, and fibronectin generation were noted when compared with cells cultured on unmodified PDMS. Investigation of cellular response and behavior was performed with atomic force microscopy in conjunction with fluorescent labeling of focal adhesion cites and fibronectin in the ECM. Changes in the surface topography induced lower adhesion, an altered actin cytoskeleton, and compacted units of fibronectin similar to that observed in vivo. Overall, these findings provide critical information of cell-surface interactions with a microtextured, polymer substrate that can be used in the field of tissue engineering for controlling cellular ECM interactions.
Acta Biomaterialia | 2015
Morgan M. Stanton; Christopher R. Lambert
Surface topography has been shown to play a major role in cell behavior, but has yet to be seriously exploited in the field of cell surface engineering. In the present work, surface roughness has been used in combination with the thermoresponsive polymer polyisopropylacrylamide (PIPAAm) to generate cell sheets with tailored biochemical properties. Micro-roughened polystyrene (PS) with 1.5-5.5 μm features was derivatized with PIPAAm to form a cell culture surface for the growth of human fibroblast cell sheets that exhibit a modified cytoskeleton and extracellular matrix. Fibroblasts cell sheets cultured on the rough surfaces had fewer actin stress fibers and twice the average fibronectin (FN) fibril formation when compared to cell sheets on flat substrates. The cell sheets harvested from the roughened PS were collected after only 2 days of culture and detached from the PIPAAm grafted surface in <1h after cooling the culture system. The simple and rapid method for generating cell sheets with increased FN fibril formation has applications in tissue grafts or wound repair and has demonstrated that the thermoresponsive surface can be used for reliable cell sheet formation.