Christopher R. Leonardi
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher R. Leonardi.
Computational Geosciences | 2016
Haihu Liu; Qinjun Kang; Christopher R. Leonardi; Sebastian Schmieschek; Ariel Narváez; Bruce D. Jones; John R. Williams; Albert J. Valocchi; Jens Harting
Over the last two decades, lattice Boltzmann methods have become an increasingly popular tool to compute the flow in complex geometries such as porous media. In addition to single phase simulations allowing, for example, a precise quantification of the permeability of a porous sample, a number of extensions to the lattice Boltzmann method are available which allow to study multiphase and multicomponent flows on a pore scale level. In this article, we give an extensive overview on a number of these diffuse interface models and discuss their advantages and disadvantages. Furthermore, we shortly report on multiphase flows containing solid particles, as well as implementation details and optimization issues.
Engineering Computations | 2012
Christopher R. Leonardi; D.R.J. Owen; Y.T. Feng
Purpose – The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material. A greater understanding of the kinematic behaviour of fines and ore within the cave during draw is integral to the solution of this problem.Design/methodology/approach – The lattice Boltzmann method (LBM) is employed in a nonlinear form to represent the fines as a continuum, and it is coupled to the discrete element method (DEM) which is used to represent large blocks. The issues relevant to this approach, such as fluid‐solid interaction, the synchronisation of explicit schemes, and the characterisation of a bulk material as a non‐Newtonian fluid are discussed.Findings – Results of the 2D simulations reveal migration trends for the geometries, material properties and operational sequen...
Engineering Computations | 2012
Christopher R. Leonardi; D.R.J. Owen; Y.T. Feng
Purpose – The purpose of this paper is to present a novel computational framework based on the lattice Boltzmann method (LBM) and discrete element method (DEM) capable of simulating fines migration in three dimensions. Fines migration occurs in a block cave mine, and is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material. Design/methodology/approach – This study builds on the foundations and applications outlined in a companion paper, in which the non‐Newtonian LBM‐DEM framework is defined and applied in 2D simulations. Issues relevant to the extension to 3D, such as spatial discretisation, fluid boundary conditions and the definition of synthetic bulk material parameters using a power law model, are discussed. Findings – The results of the 3D DEM percolation replication showed that migration is predominantly limited to within the draw zone, and that the use of a low‐cohesion material model resulted in a greater amount of fines migration. The draw sensitivity investigation undertaken with the two bell partial block cave analysis did not show a significant difference in the amount of migration, despite the two draw strategies being deliberately chosen to result in isolated and interactive draw of material. Originality/value – Along with the companion paper, this paper presents a novel application of the developed non‐Newtonian LBM‐DEM framework in the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results highlight the potential for this approach to be applied in an industrial context, and indicate a number of potential avenues for further research.
Physical Review E | 2017
Abbas Fakhari; Travis R. Mitchell; Christopher R. Leonardi; Diogo Bolster
Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013)PLEEE81539-375510.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.
Computers & Mathematics With Applications | 2018
Duo Wang; Christopher R. Leonardi; Saiied M. Aminossadati
This paper introduces improvements to the simulation of particle suspensions using the lattice Boltzmann method (LBM) and the discrete element method (DEM). First, the benefit of using a two-relaxation-time (TRT) collision operator, instead of the popular Bhatnagar-Gross-Krook (BGK) collision operator, is demonstrated. Second, a modified solid weighting function for the partially saturated method (PSM) for fluid-solid interaction is defined and tested. Results are presented for a range of flow configurations, including sphere packs, duct flows, and settling spheres, with good accuracy and convergence observed. Past research has shown that the drag, and consequently permeability, predictions of the LBM exhibit viscosity-dependence when used with certain boundary conditions such as bounce-back or interpolated bounce-back, and this is most pronounced when the BGK collision operator is employed. The improvements presented here result in a range of computational viscosities, and therefore relaxation parameters, within which drag and permeability predictions remain invariant. This allows for greater flexibility in using the relaxation parameter to adjust the LBM timestep, which can subsequently improve synchronisation with the time integration of the DEM. This has significant implications for the simulation of large-scale suspension phenomena, where the limits of computational hardware persistently constrain the resolution of the LBM lattice
2017 2nd International Conference for Fibre-optic and Photonic Sensors for Industrial and Safety Applications (OFSIS) | 2017
B.M. Masum; Saiied M. Aminossadati; Christopher R. Leonardi; M. Amanzadeh
Hollow-Core Photonic Crystal Fibres (HC PCFs) provide a microscale cell for fast response optical gas sensing. This paper presents a computational simulation of flow behaviour of methane and hydrogen gases in HC-PCFs under ambient pressure and temperature. A mathematical model has been developed to study the gas diffusion time in different structures and lengths of HC-PCF. The results show the relation of gas concentration over time along the length of HC-PCF’s core.
2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS) | 2011
John R. Williams; Sergio Herrero; Christopher R. Leonardi; Stephen Chan; Abel Sanchez; Zeyar Aung
Cyber-physical security-related queries and analytics run on traditional relational databases can take many hours to return. Furthermore, programming analytics on distributed databases requires great skill, and there is a shortage of such talent worldwide. In this talk on computational intelligence within cyber security, we will review developments of processing large datasets in-memory using a coherent shared memory approach. The coherent shared memory approach allows programmers to view a cluster of servers as a system with a single large RAM. By hiding the actual system architecture under a software layer, we proffer a more intuitive programming model. Furthermore, the design of applications is “timeless” since hardware upgrades require no changes to the software. The advantages of shared memory are countered by some disadvantages in that race conditions can occur; however, in many of these cases, we can provide models that protect us against such problems. Exemplars include sensemaking of Twitter feeds, the processing of Smart Meter datasets, and the large scale simulation of the caching of files at disparate points around the globe.
Geomechanics and Geoengineering | 2009
D.R.J. Owen; Y.T. Feng; M. Labao; K. Han; Christopher R. Leonardi; J. Yu; R. Eve
The objective of the paper is to present the essential issues related to an effective computational implementation of a continuum/discontinuum formulation of rock masses under various loading conditions, including fluid interaction for three classes of problems; fluid flow through fracturing rock masses, rock blasting and the transport of large particles through a fluid medium. The applicability of the methodology developed is illustrated through a selection of practical examples.
Heat Transfer Engineering | 2018
Amin Kamyar; Saiied M. Aminossadati; Christopher R. Leonardi
ABSTRACT The thermal performance of helical-coil heat exchangers can be significantly enhanced when operated with ice slurry as a phase-change refrigerant. It is essential to also consider the hydrodynamics of ice slurry flow to determine the overall performance of the heat exchanger. This study presents a detailed numerical investigation of the thermo-hydrodynamic performance of a helical coil heat exchanger operated with a laminar and non-Newtonian flow of ethyl-alcohol ice slurry subject to phase change. The Bingham plastic model is used to reflect the non-Newtonian behavior of ice slurry. The phase change of ice slurry is modelled using the enthalpy-porosity method. The pressure drop and heat transfer of ice slurry in a double-turn helical coil are determined in terms of ice mass fraction and Dean number. The results show that an increase in the ice mass fraction and Dean number results in an increase of the heat transfer rate. This is, however, associated with an increase in pressure drop. The entropy generation analysis is introduced to evaluate the overall performance of the heat exchanger, taking into account the opposing effects of heat transfer and pressure drop. It is evident that, at certain ice mass fractions, there exists an optimal value of the Dean number that leads to minimum irreversibility and maximum overall performance.
SPE Asia Pacific Oil & Gas Conference and Exhibition | 2016
Christopher R. Leonardi; Wojciech Regulski; Jon W. S. McCullough; Duo Wang; Travis R. Mitchell; Bruce D. Jones; John R. Williams
Current design tools used for predicting the placement of proppant in fractures are based on the solution of a simplified conservation equation that is heavily dependent on empirical relationships for particle settling and suspension viscosity. In light of these shortcomings, this paper presents the development of a computational fluid dynamics (CFD) model capable of micromechanical simulation of hydraulic fracturing fluids. The model developed in this research employs the discrete element method (DEM) to represent the proppant for a range of sizes and densities. For the fluid phase, the lattice Boltzmann method (LBM) is utilised in a generalised-Newtonian form. Full hydrodynamic coupling of the LBM and DEM is achieved via an immersed moving boundary condition. The developed model has the ability to simulate Navier-Stokes hydrodynamics, a range of rheological models (e.g. Bingham, power law), thermal effects as well as electromagnetic and electrostatic forces between particles and walls. The model captures the detailed interactions of proppant particles as well as the non-Newtonian rheology of the fracturing fluid in both experimental and fracture geometries. Simulations of small-scale experiments are used to describe suspension rheology as a function of proppant concentration while small-scale fracture models explore the settling and injection of a number of candidate formulations. These results show that the direct numerical simulation (DNS) approach presented in this paper represents a potentially valuable complement to contemporary models which can provide insight on the rheology of new or novel fracturing fluid formulations as well as explore the influence of complex in-situ features on the efficacy of a hydraulic fracture. More detailed knowledge of how proppant is transported from the wellbore to the fracture tip will provide insights that could be used in the optimisation of the hydraulic fracturing process. This is particularly relevant in coal seam gas reservoirs which can include bi-directional fracture networks, non-planar fracture paths, interburden terminations and other leak-off points.