Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher R. Woodman is active.

Publication


Featured researches published by Christopher R. Woodman.


American Journal of Physiology-heart and Circulatory Physiology | 1997

Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs

Christopher R. Woodman; Judy M. Muller; M. Harold Laughlin; Elmer M. Price

The purpose of this study was to develop a method by which endothelial cell nitric oxide synthase (ecNOS) mRNA expression could be measured in single coronary resistance arteries and to test the hypothesis that ecNOS gene expression is upregulated by exercise training. Yucatan miniature swine were randomly assigned to exercise-trained (ET; n = 5) or sedentary (Sed; n = 4) groups for 16 wk. Individual coronary resistance arteries (50-100 microns) were dissected, frozen in liquid nitrogen, and homogenized in a LiCl buffer, mRNA was isolated from each vessel, and ecNOS gene expression was assessed using reverse transcriptase (RT)-polymerase chain reaction (PCR) standardized by coamplifying ecNOS with glyceraldehyde 3-phosphate dehydrogenase (GAPHD). The ecNOS-to-GAPDH amplicon ratio was significantly greater in coronary resistance arteries isolated from ET pigs than in Sed controls. On the basis of these data, it is concluded that RT-PCR can be used on single coronary resistance arteries to assess cell-specific mRNA expression and that ecNOS gene expression is upregulated by exercise training in porcine coronary resistance arteries.The purpose of this study was to develop a method by which endothelial cell nitric oxide synthase (ecNOS) mRNA expression could be measured in single coronary resistance arteries and to test the hypothesis that ecNOS gene expression is upregulated by exercise training. Yucatan miniature swine were randomly assigned to exercise-trained (ET; n = 5) or sedentary (Sed; n = 4) groups for 16 wk. Individual coronary resistance arteries (50-100 μm) were dissected, frozen in liquid nitrogen, and homogenized in a LiCl buffer. mRNA was isolated from each vessel, and ecNOS gene expression was assessed using reverse transcriptase (RT)-polymerase chain reaction (PCR) standardized by coamplifying ecNOS with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The ecNOS-to-GAPDH amplicon ratio was significantly greater in coronary resistance arteries isolated from ET pigs than in Sed controls. On the basis of these data, it is concluded that RT-PCR can be used on single coronary resistance arteries to assess cell-specific mRNA expression and that ecNOS gene expression is upregulated by exercise training in porcine coronary resistance arteries.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Flow regulation of ecNOS and Cu/Zn SOD mRNA expression in porcine coronary arterioles

Christopher R. Woodman; Judy M. Muller; James W. E. Rush; M. Harold Laughlin; Elmer M. Price

The purpose of this study was to test the hypothesis that increased flow through coronary arterioles increases endothelial cell nitric oxide synthase (ecNOS) and Cu/Zn superoxide dismutase (SOD) mRNA expression. Single porcine coronary arterioles (ID 100-160 μm; pressurized) were cannulated, perfused, and exposed to intraluminal flow sufficient to produce maximal flow-induced dilation of coronary arterioles (high flow; 7.52 ± 0.22 μl/min), low flow (0.84 ± 0.05 μl/min), or no flow for 2 or 4 h. Mean shear stress was calculated to be 5.7 ± 1.0 dyn/cm2 for high-flow arterioles and 1.6 ± 1.0 dyn/cm2 for low-flow arterioles. At the end of the treatment period, mRNA was isolated from each vessel, and ecNOS and SOD mRNA expression was assessed using a semiquantitative RT-PCR. All data were standardized by coamplifying ecNOS or SOD with glyceraldehyde-3-phosphate dehydrogenase. The results indicate that ecNOS mRNA expression is increased in arterioles exposed to 2 or 4 h of high flow. In contrast, SOD mRNA expression was increased only after 4 h of high flow. Neither gene is induced by exposure to low flow. On the basis of these data, we concluded that ecNOS and SOD mRNA expression is regulated by flow in porcine coronary arterioles. In addition, we concluded that a threshold level of flow and shear stress must be sustained to elicit the upregulation of ecNOS and SOD mRNA expression.The purpose of this study was to test the hypothesis that increased flow through coronary arterioles increases endothelial cell nitric oxide synthase (ecNOS) and Cu/Zn superoxide dismutase (SOD) mRNA expression. Single porcine coronary arterioles (ID 100-160 micrometers; pressurized) were cannulated, perfused, and exposed to intraluminal flow sufficient to produce maximal flow-induced dilation of coronary arterioles (high flow; 7.52 +/- 0.22 microliter/min), low flow (0.84 +/- 0.05 microliter/min), or no flow for 2 or 4 h. Mean shear stress was calculated to be 5.7 +/- 1.0 dyn/cm2 for high-flow arterioles and 1. 6 +/- 1.0 dyn/cm2 for low-flow arterioles. At the end of the treatment period, mRNA was isolated from each vessel, and ecNOS and SOD mRNA expression was assessed using a semiquantitative RT-PCR. All data were standardized by coamplifying ecNOS or SOD with glyceraldehyde-3-phosphate dehydrogenase. The results indicate that ecNOS mRNA expression is increased in arterioles exposed to 2 or 4 h of high flow. In contrast, SOD mRNA expression was increased only after 4 h of high flow. Neither gene is induced by exposure to low flow. On the basis of these data, we concluded that ecNOS and SOD mRNA expression is regulated by flow in porcine coronary arterioles. In addition, we concluded that a threshold level of flow and shear stress must be sustained to elicit the upregulation of ecNOS and SOD mRNA expression.


Journal of Applied Physiology | 2009

Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries

Daniel W. Trott; Filiz Gündüz; M. Harold Laughlin; Christopher R. Woodman

We tested two hypotheses, first that exercise training reverses age-related decrements in endothelium-dependent dilation in soleus muscle feed arteries and second that this improved endothelium-dependent dilation is the result of increased nitric oxide (NO) bioavailability due to increased content and phosphorylation of endothelial NO synthase (eNOS) and/or increased antioxidant enzyme content. Young (2 mo) and old (22 mo) male Fischer 344 rats were exercise trained (Ex) or remained sedentary (Sed) for 10-12 wk, yielding four groups of rats: 1) young Sed (4-5 mo), 2) young Ex (4-5 mo), 3) old Sed (24-25 mo), and 4) old Ex (24-25 mo). Soleus muscle feed arteries (SFA) were isolated and cannulated with two glass micropipettes for examination of endothelium-dependent (ACh) and endothelium-independent [sodium nitroprusside (SNP)] vasodilator function. To determine the mechanism(s) by which exercise affected dilator responses, ACh-induced dilation was assessed in the presence of N(omega)-nitro-l-arginine (l-NNA; to inhibit NO synthase), indomethacin (Indo; to inhibit cyclooxygenase), and l-NNA + Indo. Results indicated that ACh-induced dilation was blunted in old Sed SFA relative to young Sed SFA. Exercise training improved ACh-induced dilation in old SFA such that vasodilator responses in old Ex SFA were similar to young Sed and young Ex SFA. Addition of l-NNA, or l-NNA + Indo, abolished the exercise effect. Immunoblot analysis revealed that extracellular superoxide dismutase (SOD) protein content was increased by training in old SFA, whereas eNOS and SOD-1 protein content were not altered. Addition of exogenous SOD, or SOD + catalase, improved ACh-induced dilation in old Sed SFA such that vasodilator responses were similar to young Sed SFA. Addition of l-NNA abolished the effect of exogenous SOD in old Sed arteries. Collectively, these results indicate that exercise training reverses age-induced endothelial dysfunction in SFA by increasing NO bioavailability and that increases in vascular antioxidant capacity may play an integral role in the improvement in endothelial function.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Decreased NO signaling leads to enhanced vasoconstrictor responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes and hypertension

Lisa A. Lesniewski; Anthony J. Donato; Bradley J. Behnke; Christopher R. Woodman; M. Harold Laughlin; Chester A. Ray; Michael D. Delp

Approximately 40% of patients with type 2 diabetes present with concurrent hypertension at the time of diabetes diagnosis. Increases in peripheral vascular resistance and correspondingly enhanced vasoconstrictor capacity could have profound implications for the development of hypertension and the progression of insulin resistance to overt diabetes. The purpose of this study was to determine whether skeletal muscle arteriolar vasoconstrictor dysfunction precedes or occurs concurrently with the onset of diabetes and hypertension. Male Zucker diabetic fatty (ZDF) rats were studied at 7, 13, and 20 wk of age to represent prediabetic and short-term and long-term diabetic states, respectively. Conscious mean arterial pressure (MAP), fasted plasma insulin and glucose, vasoconstrictor responses, and passive mechanical properties of isolated skeletal muscle arterioles were measured in prediabetic, diabetic, and age-matched control rats. Elevated MAP was manifest in short-term diabetes (control 117 +/- 1, diabetic 135 +/- 3 mmHg) and persisted with long-term diabetes (control 113 +/- 2, diabetic 135 +/- 3 mmHg). This higher MAP was preceded by augmented arteriolar vasoconstrictor responses to norepinephrine and endothelin-1 and followed by diminished beta-adrenergic vasodilation and enhanced myogenic constriction in long-term diabetes. Furthermore, we demonstrate that diminished nitric oxide (NO) signaling underlies the increases in vasoconstrictor responsiveness in arterioles from prediabetic and diabetic rats. Arteriolar stiffness was not different between control and prediabetic or diabetic rats at any time point studied. Collectively, these results indicate that increases in vasoconstrictor responsiveness resulting from diminished NO signaling in skeletal muscle arterioles precede the development of diabetes and hypertension in ZDF rats.


Journal of Applied Physiology | 2011

NAD(P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries

Daniel W. Trott; John W. Seawright; Meredith J. Luttrell; Christopher R. Woodman

We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.


Metabolism-clinical and Experimental | 1992

Cyclic adenosine monophosphate accumulation and β-adrenergic binding in unweighted and denervated rat soleus muscle

Christopher R. Kirby; Christopher R. Woodman; Dale P. Woolridge; Marc E. Tischler

Unweighting, but not denervation, of muscle reportedly “spares” insulin receptors, increasing insulin sensitivity. Unweighting also increases β-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and β-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a β-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular [IM] injection) to a greater degree (P < .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased β-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (Bmax) for [125I]iodo-(−)-pindolol in particulate preparations of unweighted (420 · 10−18 mol/mg muscle) than of control or denervated muscles (285 · 10−18 mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the “sparing” and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished cAMP accumulation in the presence of theophylline in unweighted muscle (−66% ± 2%) more than in controls (−42% ± 6%, P < .001). These results show that insulin affects cAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.


Journal of Applied Physiology | 2009

Setting the tone for aging in the skeletal muscle microcirculation

Christopher R. Woodman

the ability to regulate vasomotor tone in resistance arteries and arterioles plays an integral role in mediating the circulatory adjustments that occur during exercise. During exercise, skeletal muscle blood flow must increase to actively contracting skeletal muscle to supply oxygen and nutrients


Frontiers in Physiology | 2018

Vascular Smooth Muscle Contractile Function Declines With Age in Skeletal Muscle Feed Arteries

John W. Seawright; Harini Sreenivasappa; Holly C. Gibbs; Samuel Padgham; Song Y. Shin; Christine Chaponnier; Alvin T. Yeh; Jerome P. Trzeciakowski; Christopher R. Woodman; Andreea Trache

Aging induces a progressive decline in vasoconstrictor responses in central and peripheral arteries. This study investigated the hypothesis that vascular smooth muscle (VSM) contractile function declines with age in soleus muscle feed arteries (SFA). Contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses of denuded (endothelium removed) SFA to norepinephrine (NE), phenylephrine (PE), and angiotensin II (Ang II). In addition, we investigated the role of RhoA signaling in modulation of VSM contractile function. Structural and functional characteristics of VSM cells were evaluated by fluorescence imaging and atomic force microscopy (AFM). Results indicated that constrictor responses to PE and Ang II were significantly impaired in old SFA, whereas constrictor responses to NE were preserved. In the presence of a Rho-kinase inhibitor (Y27632), constrictor responses to NE, Ang II, and PE were significantly reduced in young and old SFA. In addition, the age-group difference in constrictor responses to Ang II was eliminated. ROCK1 and ROCK2 content was similar in young and old VSM cells, whereas pROCK1 and pROCK2 were significantly elevated in old VSM cells. Aging was associated with a reduction in smooth muscle α-actin stress fibers and recruitment of proteins to cell-matrix adhesions. Old VSM cells presented an increase in integrin adhesion to the matrix and smooth muscle γ-actin fibers that was associated with increased cell stiffness. In conclusion, our results indicate that VSM contractile function declined with age in SFA. The decrement in contractile function was mediated in part by RhoA/ROCK signaling. Upregulation of pROCK in old VSM cells was not able to rescue contractility in old SFA. Collectively, these results indicate that changes at the VSM cell level play a central role in the reduced contractile function of aged SFA.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Importance of mechanical signals in promoting exercise-induced improvements in vasomotor function of aged skeletal muscle resistance arteries

Christopher R. Woodman; John W. Seawright; Meredith J. Luttrell; Song Yi Shin; Andreea Trache

Current research indicates that vasomotor responses are altered with aging in skeletal muscle resistance arteries. The changes in vasomotor function are characterized by impaired vasodilator and vasoconstrictor responses. The detrimental effects of aging on vasomotor function are attenuated in some vascular beds after a program of endurance exercise training. The signals associated with exercise responsible for inducing improvements in vasomotor function have been proposed to involve short-duration increases in intraluminal shear stress and/or pressure during individual bouts of exercise. Here, we review evidence that increases in shear stress and pressure, within a range believed to present in these arteries during exercise, promote healthy vasomotor function in aged resistance arteries. We conclude that available research is consistent with the interpretation that short-duration mechanical stimulation, through increases in shear stress and pressure, contributes to the beneficial effects of exercise on vasomotor function in aged skeletal muscle resistance arteries.


Journal of Applied Physiology | 2002

Aging induces muscle-specific impairment of endothelium-dependent dilation in skeletal muscle feed arteries.

Christopher R. Woodman; Elmer M. Price; M. Harold Laughlin

Collaboration


Dive into the Christopher R. Woodman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G. Schrage

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge