Christopher S. Ahuja
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher S. Ahuja.
Nature Reviews Disease Primers | 2017
Christopher S. Ahuja; Jefferson R. Wilson; Satoshi Nori; Mark R. Kotter; C. Druschel; Armin Curt; Michael G. Fehlings
Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patients injury experience.
Stem Cells Translational Medicine | 2016
Christopher S. Ahuja; Michael G. Fehlings
Spinal cord injuries (SCIs) result in devastating lifelong disability for patients and their families. The initial mechanical trauma is followed by a damaging secondary injury cascade involving proapoptotic signaling, ischemia, and inflammatory cell infiltration. Ongoing cellular necrosis releases ATP, DNA, glutamate, and free radicals to create a cytotoxic postinjury milieu. Long‐term regeneration of lost or injured networks is further impeded by cystic cavitation and the formation of an inhibitory glial‐chondroitin sulfate proteoglycan scar. In this article, we discuss important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. We then explore exciting translational therapies on the horizon, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. Finally, we summarize the key neuroregenerative strategies of the next decade, including glial scar degradation, Rho‐ROCK inhibition, cell‐based therapies, and novel bioengineered adjuncts. Throughout, we emphasize the need for combinatorial approaches to this multifactorial problem and discuss relevant studies at the forefront of translation. We conclude by providing our perspectives on the future direction of SCI research.
Neurosurgery | 2017
Christopher S. Ahuja; Satoshi Nori; Lindsay Tetreault; Jefferson R. Wilson; Brian K. Kwon; James S. Harrop; David Choi; Michael G. Fehlings
BACKGROUND Traumatic spinal cord injuries (SCI) have devastating consequences for the physical, financial, and psychosocial well-being of patients and their caregivers. Expediently delivering interventions during the early postinjury period can have a tremendous impact on long-term functional recovery. PATHOPHYSIOLOGY This is largely due to the unique pathophysiology of SCI where the initial traumatic insult (primary injury) is followed by a progressive secondary injury cascade characterized by ischemia, proapoptotic signaling, and peripheral inflammatory cell infiltration. Over the subsequent hours, release of proinflammatory cytokines and cytotoxic debris (DNA, ATP, reactive oxygen species) cyclically adds to the harsh postinjury microenvironment. As the lesions mature into the chronic phase, regeneration is severely impeded by the development of an astroglial-fibrous scar surrounding coalesced cystic cavities. Addressing these challenges forms the basis of current and upcoming treatments for SCI. MANAGEMENT This paper discusses the evidence-based management of a patient with SCI while emphasizing the importance of early definitive care. Key neuroprotective therapies are summarized including surgical decompression, methylprednisolone, and blood pressure augmentation. We then review exciting neuroprotective interventions on the cusp of translation such as Riluzole, Minocycline, magnesium, therapeutic hypothermia, and CSF drainage. We also explore the most promising neuroregenerative strategies in trial today including Cethrin™, anti-NOGO antibody, cell-based approaches, and bioengineered biomaterials. Each section provides a working knowledge of the key preclinical and patient trials relevant to clinicians while highlighting the pathophysiologic rationale for the therapies. CONCLUSION We conclude with our perspectives on the future of treatment and research in this rapidly evolving field.
F1000Research | 2016
Christopher S. Ahuja; Allan R. Martin; Michael G. Fehlings
Traumatic spinal cord injuries (SCIs) affect 1.3 million North Americans, producing devastating physical, social, and vocational impairment. Pathophysiologically, the initial mechanical trauma is followed by a significant secondary injury which includes local ischemia, pro-apoptotic signaling, release of cytotoxic factors, and inflammatory cell infiltration. Expedient delivery of medical and surgical care during this critical period can improve long-term functional outcomes, engendering the concept of “Time is Spine”. We emphasize the importance of expeditious care while outlining the initial clinical and radiographic assessment of patients. Key evidence-based early interventions (surgical decompression, blood pressure augmentation, and methylprednisolone) are also reviewed, including findings of the landmark Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). We then describe other neuroprotective approaches on the edge of translation such as the sodium-channel blocker riluzole, the anti-inflammatory minocycline, and therapeutic hypothermia. We also review promising neuroregenerative therapies that are likely to influence management practices over the next decade including chondroitinase, Rho-ROCK pathway inhibition, and bioengineered strategies. The importance of emerging neural stem cell therapies to remyelinate denuded axons and regenerate neural circuits is also discussed. Finally, we outline future directions for research and patient care.
Acta Biomaterialia | 2016
Klaus Zweckberger; Christopher S. Ahuja; Yang Liu; Jian Wang; Michael G. Fehlings
INTRODUCTION The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that optimizing the post-traumatic environment with QL6 self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would improve cell survival, differentiation and functional recovery. METHODS A total of 90 Wistar rats received a clip-compression SCI at C7. Within each of two study arms, animals were randomized into 5 groups (NPC, SAP, NPC+SAP, vehicle, and sham). SAPs and NPCs were injected into the spinal cord 1day and 14days post-injury, respectively. Animals received growth factors over 7days and were immunosuppressed. Rats were sacrificed at 4weeks and sections of the cervical spinal cord prepared for immunohistochemistry (first study arm). Neurological function was assessed weekly for 8weeks using a battery of behavioral tests. Nine weeks post-SCI, the corticospinal tract was assessed using fiber-tracking (second arm). RESULTS SAP-treated animals had significantly more surviving NPCs which showed increased differentiation to neurons and oligodendrocytes compared to controls. SAPs alone or in combination with NPCs resulted in smaller intramedullary cysts and larger volume of preserved tissue compared to other groups. The combined treatment group showed reduced astrogliosis and chondroitin sulfate proteoglycan deposition. Synaptic connectivity was increased in the NPC and combined treatment groups. Corticospinal tract preservation and behavioral outcomes improved with combinatorial treatment. CONCLUSION Injecting SAPs after SCI enhances subsequent NPC survival, integration and differentiation and improves functional recovery. STATEMENT OF SIGNIFICANCE The hostile environment after spinal cord injury (SCI) can compromise effects of regenerative therapies. We hypothesized that improving this environment with self-assembling peptides (SAPs) before neural precursor cell (NPC) transplantation would support their beneficial effects. SAPs assemble once injected, providing a supportive scaffold for repair and regeneration. We investigated this in a rat model of spinal cord injury. More NPCs survived in SAP-treated animals and these showed increased differentiation compared to controls. SAPS alone or in combination with NPCs resulted in smaller cysts and larger volume of preserved tissue with the combined treatment also reducing scarring and improving behavioral outcomes. Overall, injection of SAPs was shown to improve the efficacy of NPC treatment, a promising finding for those with SCIs.
Frontiers in Cell and Developmental Biology | 2017
Mohamad Khazaei; Christopher S. Ahuja; Michael G. Fehlings
Spinal cord injury (SCI) is a common cause of mortality and neurological morbidity. Although progress had been made in the last decades in medical, surgical, and rehabilitation treatments for SCI, the outcomes of these approaches are not yet ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is very promising. Cell therapies for the treatment of SCI are limited by several translational road blocks, including ethical concerns in relation to cell sources. The use of iPSCs is particularly attractive, given that they provide an autologous cell source and avoid the ethical and moral considerations of other stem cell sources. In addition, different cell types, that are applicable to SCI, can be created from iPSCs. Common cell sources used for reprogramming are skin fibroblasts, keratinocytes, melanocytes, CD34+ cells, cord blood cells and adipose stem cells. Different cell types have different genetic and epigenetic considerations that affect their reprogramming efficiencies. Furthermore, in SCI the iPSCs can be differentiated to neural precursor cells, neural crest cells, neurons, oligodendrocytes, astrocytes, and even mesenchymal stromal cells. These can produce functional recovery by replacing lost cells and/or modulating the lesion microenvironment.
Expert Review of Neurotherapeutics | 2016
Antigona Ulndreaj; Jonathon C.T. Chio; Christopher S. Ahuja; Michael G. Fehlings
Institute of Medical Science, University of Toronto, Toronto, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; McEwen Centre for Regenerative Medicine, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada; Spine Program, University of Toronto, Toronto, Canada; Krembil Neuroscience Centre, University Health Network, Toronto, Canada
PLOS ONE | 2017
Hidenori Suzuki; Christopher S. Ahuja; Ryan P. Salewski; Lijun Li; Kajana Satkunendrarajah; Narihito Nagoshi; Shinsuke Shibata; Michael G. Fehlings
Traumatic spinal cord injuries (SCIs) affect millions of people worldwide; the majority of whom are in the chronic phase of their injury. Unfortunately, most current treatments target the acute/subacute injury phase as the microenvironment of chronically injured cord consists of a well-established glial scar with inhibitory chondroitin sulfate proteoglycans (CSPGs) which acts as a potent barrier to regeneration. It has been shown that CSPGs can be degraded in vivo by intrathecal Chondroitinase ABC (ChABC) to produce a more permissive environment for regeneration by endogenous cells or transplanted neural stem cells (NSCs) in the subacute phase of injury. Using a translationally-relevant clip-contusion model of cervical spinal cord injury in mice we sought to determine if ChABC pretreatment could modify the harsh chronic microenvironment to enhance subsequent regeneration by induced pluripotent stem cell-derived NSCs (iPS-NSC). Seven weeks after injury—during the chronic phase—we delivered ChABC by intrathecal osmotic pump for one week followed by intraparenchymal iPS-NSC transplant rostral and caudal to the injury epicenter. ChABC administration reduced chronic-injury scar and resulted in significantly improved iPSC-NSC survival with clear differentiation into all three neuroglial lineages. Neurons derived from transplanted cells also formed functional synapses with host circuits on patch clamp analysis. Furthermore, the combined treatment led to recovery in key functional muscle groups including forelimb grip strength and measures of forelimb/hindlimb locomotion assessed by Catwalk. This represents important proof-of-concept data that the chronically injured spinal cord can be ‘unlocked’ by ChABC pretreatment to produce a microenvironment conducive to regenerative iPS-NSC therapy.
Current protocols in stem cell biology | 2017
Mohamad Khazaei; Christopher S. Ahuja; Michael G. Fehlings
This unit describes protocols for the efficient generation of oligodendrogenic neural progenitor cells (o-NPCs) from human induced pluripotent stem cells (hiPSCs). Specifically, detailed methods are provided for the maintenance and differentiation of hiPSCs, human induced pluripotent stem cell-derived neural progenitor cells (hiPS-NPCs), and human induced pluripotent stem cell-oligodendrogenic neural progenitor cells (hiPSC-o-NPCs) with the final products being suitable for in vitro experimentation or in vivo transplantation. Throughout, cell exposure to growth factors and patterning morphogens has been optimized for both concentration and timing, based on the literature and empirical experience, resulting in a robust and highly efficient protocol. Using this derivation procedure, it is possible to obtain millions of oligodendrogenic-NPCs within 40 days of initial cell plating which is substantially shorter than other protocols for similar cell types. This protocol has also been optimized to use translationally relevant human iPSCs as the parent cell line. The resultant cells have been extensively characterized both in vitro and in vivo and express key markers of an oligodendrogenic lineage.
Stroke | 2012
Christopher S. Ahuja; Muhammad Mamdani; Gustavo Saposnik
Background and Purpose— Vital to maintaining an efficient delivery of services is an understanding of patient travel patterns during an acute ischemic stroke. Socioeconomic status may influence access to stroke care, including transportation and admission to different facility types. Methods— We analyzed all acute ischemic stroke admissions between 2003 and 2007 through the Discharge Abstract Database, a national database containing patient-level sociodemographic, diagnostic, procedural, and administrative information across Canada. Socioeconomic status was defined in neighborhood quintiles according to Statistics Canada. Distances between patients and facilities were derived from postal codes. A principal diagnosis of ischemic stroke was identified using the International Classification of Diseases (versions 9 and 10). Analysis of variance and regression analyses were performed with adjustment for demographic characteristics. Results— Admitted to acute care institutions were 243 410 patients with ischemic stroke. Mean patient age was 72.8 and 49.5% were male; 44.2% traveled beyond their closest center, amounting to an average 7.2 km additional distance traveled. Socioeconomic status quintile had minimal effect on travel patterns, with the lowest socioeconomic status accessing the closest center most frequently (odds ratio, 1.19; 95% confidence interval [CI], 1.13–1.16). Increased utilization of the closest hospital occurred with academic (odds ratio, 6.90; 95% CI, 6.69–7.11) or high-volume (odds ratio, 1.93; 95% CI, 1.88–1.98) facilities. Older patients (&bgr;=0.28; 95% CI, 0.27–0.28), expert destination facility (&bgr;=0.13; 95% CI, 0.12–0.14), and ambulance use increased travel beyond the closest center. Conclusions— Patients tend to choose care facilities based on hospital expertise; investment promoting improved regional facilities may be of greatest benefit to patients. Socioeconomic status has little bearing on travel patterns associated with stroke in Canada. These findings may assist in allocating funding to centers and improving patient care.