Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Chen is active.

Publication


Featured researches published by Christopher S. Chen.


Developmental Cell | 2004

Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment

Dana M. Pirone; Celeste M. Nelson; Kiran Bhadriraju; Christopher S. Chen

Commitment of stem cells to different lineages is regulated by many cues in the local tissue microenvironment. Here we demonstrate that cell shape regulates commitment of human mesenchymal stem cells (hMSCs) to adipocyte or osteoblast fate. hMSCs allowed to adhere, flatten, and spread underwent osteogenesis, while unspread, round cells became adipocytes. Cell shape regulated the switch in lineage commitment by modulating endogenous RhoA activity. Expressing dominant-negative RhoA committed hMSCs to become adipocytes, while constitutively active RhoA caused osteogenesis. However, the RhoA-mediated adipogenesis or osteogenesis was conditional on a round or spread shape, respectively, while constitutive activation of the RhoA effector, ROCK, induced osteogenesis independent of cell shape. This RhoA-ROCK commitment signal required actin-myosin-generated tension. These studies demonstrate that mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cells lying on a bed of microneedles: An approach to isolate mechanical force

John L. Tan; Joe Tien; Dana M. Pirone; Darren S. Gray; Kiran Bhadriraju; Christopher S. Chen

We describe an approach to manipulate and measure mechanical interactions between cells and their underlying substrates by using microfabricated arrays of elastomeric, microneedle-like posts. By controlling the geometry of the posts, we varied the compliance of the substrate while holding other surface properties constant. Cells attached to, spread across, and deflected multiple posts. The deflections of the posts occurred independently of neighboring posts and, therefore, directly reported the subcellular distribution of traction forces. We report two classes of force-supporting adhesions that exhibit distinct force–size relationships. Force increased with size of adhesions for adhesions larger than 1 μm2, whereas no such correlation existed for smaller adhesions. By controlling cell adhesion on these micromechanical sensors, we showed that cell morphology regulates the magnitude of traction force generated by cells. Cells that were prevented from spreading and flattening against the substrate did not contract in response to stimulation by serum or lysophosphatidic acid, whereas spread cells did. Contractility in the unspread cells was rescued by expression of constitutively active RhoA. Together, these findings demonstrate a coordination of biochemical and mechanical signals to regulate cell adhesion and mechanics, and they introduce the use of arrays of mechanically isolated sensors to manipulate and measure the mechanical interactions of cells.


Cell Stem Cell | 2009

Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix

Farshid Guilak; Daniel M. Cohen; Bradley T. Estes; Jeffrey M. Gimble; Wolfgang Liedtke; Christopher S. Chen

A diverse array of environmental factors contributes to the overall control of stem cell activity. In particular, new data continue to mount on the influence of the extracellular matrix (ECM) on stem cell fate through physical interactions with cells, such as the control of cell geometry, ECM geometry/topography at the nanoscale, ECM mechanical properties, and the transmission of mechanical or other biophysical factors to the cell. Here, we review some of the physical processes by which cues from the ECM can influence stem cell fate, with particular relevance to the use of stem cells in tissue engineering and regenerative medicine.


Nature Materials | 2012

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

Jordan S. Miller; Kelly R. Stevens; Michael T. Yang; Brendon M. Baker; Duc-Huy T. Nguyen; Daniel M. Cohen; Esteban Toro; Alice A. Chen; Peter A. Galie; Xiang-Qing Yu; Ritika R. Chaturvedi; Sangeeta N. Bhatia; Christopher S. Chen

In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core [1]. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture [2–4]. Here, we 3D printed rigid filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization, and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices (ECMs), and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.


Nature | 2010

Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics

Carsten Grashoff; Brenton D. Hoffman; Michael D. Brenner; Ruobo Zhou; Madeline Parsons; Michael T. Yang; Mark A. McLean; Stephen G. Sligar; Christopher S. Chen; Taekjip Ha; Martin A. Schwartz

Mechanical forces are central to developmental, physiological and pathological processes. However, limited understanding of force transmission within sub-cellular structures is a major obstacle to unravelling molecular mechanisms. Here we describe the development of a calibrated biosensor that measures forces across specific proteins in cells with piconewton (pN) sensitivity, as demonstrated by single molecule fluorescence force spectroscopy. The method is applied to vinculin, a protein that connects integrins to actin filaments and whose recruitment to focal adhesions (FAs) is force-dependent. We show that tension across vinculin in stable FAs is ∼2.5 pN and that vinculin recruitment to FAs and force transmission across vinculin are regulated separately. Highest tension across vinculin is associated with adhesion assembly and enlargement. Conversely, vinculin is under low force in disassembling or sliding FAs at the trailing edge of migrating cells. Furthermore, vinculin is required for stabilizing adhesions under force. Together, these data reveal that FA stabilization under force requires both vinculin recruitment and force transmission, and that, surprisingly, these processes can be controlled independently.


Nature Methods | 2010

Mechanical regulation of cell function with geometrically modulated elastomeric substrates

Jianping Fu; Yang Kao Wang; Michael T. Yang; Ravi A. Desai; Xiang Yu; Zhijun Liu; Christopher S. Chen

We report the establishment of a library of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrated that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility and stem cell differentiation. Furthermore, early changes in cytoskeletal contractility predicted later stem cell fate decisions in single cells.


Biotechnology Progress | 1998

Micropatterned Surfaces for Control of Cell Shape, Position, and Function

Christopher S. Chen; Milan Mrksich; Sui Huang; George M. Whitesides; Donald E. Ingber

The control of cell position and function is a fundamental focus in the development of applications ranging from cellular biosensors to tissue engineering. Using microcontact printing of self‐assembled monolayers (SAMs) of alkanethiolates on gold, we manufactured substrates that contained micrometer‐scale islands of extracellular matrix (ECM) separated by nonadhesive regions such that the pattern of islands determined the distribution and position of bovine and human endothelial cells. In addition, the size and geometry of the islands were shown to control cell shape. Traditional approaches to modulate cell shape, either by attaching suspended cells to microbeads of different sizes or by plating cells on substrates coated with different densities of ECM, suggested that cell shape may play an important role in control of apoptosis as well as growth. Data are presented which show how micropatterned substrates were used to definitively test this hypothesis. Progressively restricting bovine and human endothelial cell extension by culturing cells on smaller and smaller micropatterned adhesive islands regulated a transition from growth to apoptosis on a single continuum of cell spreading, thus confirming the central role of cell shape in cell function. The micropatterning technology is therefore essential not only for construction of biosurface devices but also for the investigation of the fundamental biology of cell−ECM interactions.


Journal of Cell Science | 2012

Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues

Brendon M. Baker; Christopher S. Chen

Summary Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which – in turn – regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.


Nature Reviews Molecular Cell Biology | 2009

Mechanotransduction in development: a growing role for contractility

Michele A. Wozniak; Christopher S. Chen

Mechanotransduction research has focused historically on how externally applied forces can affect cell signalling and function. A growing body of evidence suggests that contractile forces that are generated internally by the actomyosin cytoskeleton are also important in regulating cell behaviour, and suggest a broader role for mechanotransduction in biology. Although the molecular basis for these cellular forces in mechanotransduction is being pursued in cell culture, researchers are also beginning to appreciate their contribution to in vivo developmental processes. Here, we examine the role for mechanical forces and contractility in regulating cell and tissue structure and function during development.


Nature Materials | 2013

Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

Sudhir Khetan; Murat Guvendiren; Wesley R. Legant; Daniel M. Cohen; Christopher S. Chen; Jason A. Burdick

Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional (3D) encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular-traction, independent of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that either permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). In addition, switching the permissive hydrogel to a restrictive state via delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Also, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

Collaboration


Dive into the Christopher S. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Yang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Tan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi A. Desai

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Cohen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Eyckmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge