Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Eickhoff is active.

Publication


Featured researches published by Christopher S. Eickhoff.


Infection and Immunity | 2012

Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection

Wei-Jen Chua; Steven M. Truscott; Christopher S. Eickhoff; Azra Blazevic; Daniel F. Hoft; Ted H. Hansen

ABSTRACT Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection.


Infection and Immunity | 2000

Involvement of CD4(+) Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi.

Daniel F. Hoft; Anita R. Schnapp; Christopher S. Eickhoff; Stanford T. Roodman

ABSTRACT In general, gamma interferon (IFN-γ)-producing CD4+Th1 cells are important for the immunological control of intracellular pathogens. We previously demonstrated an association between parasite-specific induction of IFN-γ responses and resistance to the intracellular protozoan Trypanosoma cruzi. To investigate a potential causal relationship between Th1 responses andT. cruzi resistance, we studied the ability of Th1 cells to protect susceptible BALB/c mice against virulent parasite challenges. We developed immunization protocols capable of inducing polarized Th1 and Th2 responses in vivo. Induction of parasite-specific Th1 responses, but not Th2 responses, protected BALB/c mice against virulent T. cruzi challenges. We generated T. cruzi-specific CD4+ Th1 and Th2 cell lines from BALB/c mice that were activated by infected macrophages to produce their corresponding cytokine response profiles. Th1 cells, but not Th2 cells, induced nitric oxide production and inhibited intracellular parasite replication in T. cruzi-infected macrophages. Despite the ability to inhibit parasite replication in vitro, Th1 cells alone could not adoptively transfer protection againstT. cruzi to SCID mice. In addition, despite the fact that the adoptive transfer of CD4+ T lymphocytes was shown to be necessary for the development of immunity protective against primary T. cruzi infection in our SCID mouse model, protective secondary effector functions could be transferred to SCID mice from memory-immune BALB/c mice in the absence of CD4+ T lymphocytes. These results indicate that, although CD4+ Th1 cells can directly inhibit intracellular parasite replication, a more important role for these cells in T. cruzi systemic immunity may be to provide helper activity for the development of other effector functions protective in vivo.


Journal of Immunology | 2007

Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming.

Daniel F. Hoft; Christopher S. Eickhoff; Olivia K. Giddings; José R. C. Vasconcelos; Mauricio M. Rodrigues

The Trypanosoma cruzi trans-sialidase (TS) is a unique enzyme with neuraminidase and sialic acid transfer activities important for parasite infectivity. The T. cruzi genome contains a large family of TS homologous genes, and it has been suggested that TS homologues provide a mechanism of immune escape important for chronic infection. We have investigated whether the consensus TS enzymatic domain could induce immunity protective against acute and chronic, as well as mucosal and systemic, T. cruzi infection. We have shown that: 1) TS-specific immunity can protect against acute T. cruzi infection; 2) effective TS-specific immunity is maintained during chronic T. cruzi infection despite the expression of numerous related TS superfamily genes encoding altered peptide ligands that in theory could promote immune tolerization; and 3) the practical intranasal delivery of recombinant TS protein combined with a ssDNA oligodeoxynucleotide (ODN) adjuvant containing unmethylated CpG motifs can induce both mucosal and systemic protective immunity. We have further demonstrated that the intranasal delivery of soluble TS recombinant Ag combined with CpG ODN induces both TS-specific CD4+ and CD8+ T cells associated with vaccine-induced protective immunity. In addition, optimal protection induced by intranasal TS Ag combined with CpG ODN requires B cells, which, after treatment with CpG ODN, have the ability to induce TS-specific CD8+ T cell cross-priming. Our results support the development of TS vaccines for human use, suggest surrogate markers for use in future human vaccine trials, and mechanistically identify B cells as important APC targets for vaccines designed to induce CD8+ CTL responses.


Journal of Immunology | 2013

Tumor-Derived γδ Regulatory T Cells Suppress Innate and Adaptive Immunity through the Induction of Immunosenescence

Jian Ye; Chunling Ma; Eddy C. Hsueh; Christopher S. Eickhoff; Yanping Zhang; Mark A. Varvares; Daniel F. Hoft; Guangyong Peng

Fundamentally understanding the suppressive mechanisms used by different subsets of tumor-infiltrating regulatory T (Treg) cells is critical for the development of effective strategies for antitumor immunotherapy. γδ Treg cells have recently been identified in human diseases including cancer. However, the suppressive mechanisms and functional regulations of this new subset of unconventional Treg cells are largely unknown. In the current studies, we explored the suppressive mechanism(s) used by breast tumor-derived γδ Treg cells on innate and adaptive immunity. We found that γδ Treg cells induced immunosenescence in the targeted naive and effector T cells, as well as dendritic cells (DCs). Furthermore, senescent T cells and DCs induced by γδ Treg cells had altered phenotypes and impaired functions and developed potent suppressive activities, further amplifying the immunosuppression mediated by γδ Treg cells. In addition, we demonstrated that manipulation of TLR8 signaling in γδ Treg cells can block γδ Treg–induced conversion of T cells and DCs into senescent cells in vitro and in vivo. Our studies identify the novel suppressive mechanism mediated by tumor-derived γδ Treg cells on innate and adaptive immunity, which should be critical for the development of strong and innovative approaches to reverse the tumor-suppressive microenvironment and improve effects of immunotherapy.


Journal of Immunology | 2015

Functional Heterogeneity and Antimycobacterial Effects of Mouse Mucosal-Associated Invariant T Cells Specific for Riboflavin Metabolites

Isaac G. Sakala; Lars Kjer-Nielsen; Christopher S. Eickhoff; Xiaoli Wang; Azra Blazevic; Ligong Liu; David P. Fairlie; Jamie Rossjohn; James McCluskey; Daved H. Fremont; Ted H. Hansen; Daniel F. Hoft

Mucosal-associated invariant T (MAIT) cells have a semi-invariant TCR Vα-chain, and their optimal development is dependent upon commensal flora and expression of the nonpolymorphic MHC class I–like molecule MR1. MAIT cells are activated in an MR1-restricted manner by diverse strains of bacteria and yeast, suggesting a widely shared Ag. Recently, human and mouse MR1 were found to bind bacterial riboflavin metabolites (ribityllumazine [RL] Ags) capable of activating MAIT cells. In this study, we used MR1/RL tetramers to study MR1 dependency, subset heterogeneity, and protective effector functions important for tuberculosis immunity. Although tetramer+ cells were detected in both MR1+/+ and MR1−/− TCR Vα19i-transgenic (Tg) mice, MR1 expression resulted in significantly increased tetramer+ cells coexpressing TCR Vβ6/8, NK1.1, CD44, and CD69 that displayed more robust in vitro responses to IL-12 plus IL-18 and RL Ag, indicating that MR1 is necessary for the optimal development of the classic murine MAIT cell memory/effector subset. In addition, tetramer+ MAIT cells expressing CD4, CD8, or neither developing in MR1+/+ Vα19i-Tg mice had disparate cytokine profiles in response to RL Ag. Therefore, murine MAIT cells are considerably more heterogeneous than previously thought. Most notably, after mycobacterial pulmonary infection, heterogeneous subsets of tetramer+ Vα19i-Tg MAIT cells expressing CXCR3 and α4β1 were recruited into the lungs and afforded early protection. In addition, Vα19iCα−/−MR+/+ mice were significantly better protected than were Vα19iCα−/−MR1−/−, wild-type, and MR1−/− non-Tg mice. Overall, we demonstrate considerable functional diversity of MAIT cell responses, as well as that MR1-restricted MAIT cells are important for tuberculosis protective immunity.


PLOS Pathogens | 2013

Granzyme A Produced by γ9δ2 T Cells Induces Human Macrophages to Inhibit Growth of an Intracellular Pathogen

Charles T. Spencer; Getahun Abate; Isaac G. Sakala; Mei Xia; Steven M. Truscott; Christopher S. Eickhoff; Rebecca Linn; Azra Blazevic; Sunil S. Metkar; Guangyong Peng; Christopher J. Froelich; Daniel F. Hoft

Human γ9δ2 T cells potently inhibit pathogenic microbes, including intracellular mycobacteria, but the key inhibitory mechanism(s) involved have not been identified. We report a novel mechanism involving the inhibition of intracellular mycobacteria by soluble granzyme A. γ9δ2 T cells produced soluble factors that could pass through 0.45 µm membranes and inhibit intracellular mycobacteria in human monocytes cultured below transwell inserts. Neutralization of TNF-α in co-cultures of infected monocytes and γ9δ2 T cells prevented inhibition, suggesting that TNF-α was the critical inhibitory factor produced by γ9δ2 T cells. However, only siRNA- mediated knockdown of TNF-α in infected monocytes, but not in γ9δ2 T cells, prevented mycobacterial growth inhibition. Investigations of other soluble factors produced by γ9δ2 T cells identified a highly significant correlation between the levels of granzyme A produced and intracellular mycobacterial growth inhibition. Furthermore, purified granzyme A alone induced inhibition of intracellular mycobacteria, while knockdown of granzyme A in γ9δ2 T cell clones blocked their inhibitory effects. The inhibitory mechanism was independent of autophagy, apoptosis, nitric oxide production, type I interferons, Fas/FasL and perforin. These results demonstrate a novel microbial defense mechanism involving granzyme A-mediated triggering of TNF-α production by monocytes leading to intracellular mycobacterial growth suppression. This pathway may provide a protective mechanism relevant for the development of new vaccines and/or immunotherapies for macrophage-resident chronic microbial infections.


PLOS Neglected Tropical Diseases | 2011

Co-Administration of a Plasmid DNA Encoding IL-15 Improves Long-Term Protection of a Genetic Vaccine against Trypanosoma cruzi

Christopher S. Eickhoff; José R. C. Vasconcelos; Nicole L. Sullivan; Azra Blazevic; Oscar Bruna-Romero; Mauricio M. Rodrigues; Daniel F. Hoft

Background Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. The goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone. Methodology We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-γ ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-γ, TNF-α, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-γ responses and survived a lethal challenge given within the first 3 months following immunization. The addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P<0.05). Improved protection correlated with significantly higher numbers of TS-specific IFN-γ producing total and CD8+ T cells detected>6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro re-stimulation. Conclusion Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.


Infection and Immunity | 2006

Anatomical Route of Invasion and Protective Mucosal Immunity in Trypanosoma cruzi Conjunctival Infection

O. K. Giddings; Christopher S. Eickhoff; Thomas J. Smith; L. A. Bryant; Daniel F. Hoft

ABSTRACT Trypanosoma cruzi is a protozoan parasite that can initiate mucosal infection after conjunctival exposure. The anatomical route of T. cruzi invasion and spread after conjunctival parasite contamination remains poorly characterized. In the present work we have identified the sites of initial invasion and replication after contaminative conjunctival challenges with T. cruzi metacyclic trypomastigotes using a combination of immunohistochemical and real-time PCR confirmatory techniques in 56 mice between 3 and 14 days after challenge. Our results demonstrate that the predominant route of infection involves drainage of parasites through the nasolacrimal duct into the nasal cavity. Initial parasite invasion occurs within the ductal and respiratory epithelia. After successive waves of intracellular replication and cell-to-cell spread, parasites drain via local lymphatic channels to lymph nodes and then disseminate through the blood to distant tissues. This model of conjunctival challenge was used to identify immune responses associated with protection against mucosal infection. Preceding mucosal infection induces mucosal immunity, resulting in at least 50-fold reductions in recoverable tissue parasite DNA in immune mice compared to controls 10 days after conjunctival challenge (P < 0.05). Antigen-specific gamma interferon production by T cells was increased at least 100-fold in cells harvested from immune mice (P < 0.05). Mucosal secretions containing T. cruzi-specific secretory immunoglobulin A harvested from immune mice were shown to protect against mucosal parasite infection (P < 0.05), demonstrating that mucosal antibodies can play a role in T. cruzi immunity. This model provides an important tool for detailed studies of mucosal immunity necessary for the development of mucosal vaccines.


Journal of Immunology | 2011

Importance of the CCR5-CCL5 axis for mucosal Trypanosoma cruzi protection and B cell activation

Nicole L. Sullivan; Christopher S. Eickhoff; Xiuli Zhang; Olivia K. Giddings; Thomas E. Lane; Daniel F. Hoft

Trypanosoma cruzi is an intracellular parasite and the causative agent of Chagas disease. Previous work has shown that the chemokine receptor CCR5 plays a role in systemic T. cruzi protection. We evaluated the importance of CCR5 and CCL5 for mucosal protection against natural oral and conjunctival T. cruzi challenges. T. cruzi-immune CCR5−/− and wild-type C57BL/6 mice were generated by repeated infectious challenges with T. cruzi. CCR5−/− and wild-type mice developed equivalent levels of cellular, humoral, and protective mucosal responses. However, CCR5−/−-immune mice produced increased levels of CCL5 in protected gastric tissues, suggesting compensatory signaling through additional receptors. Neutralization of CCL5 in CCR5−/−-immune mice resulted in decreased mucosal inflammatory responses, reduced T. cruzi-specific Ab-secreting cells, and significantly less mucosal T. cruzi protection, confirming an important role for CCL5 in optimal immune control of T. cruzi replication at the point of initial mucosal invasion. To investigate further the mechanism responsible for mucosal protection mediated by CCL5–CCR5 signaling, we evaluated the effects of CCL5 on B cells. CCL5 enhanced proliferation and IgM secretion in highly purified B cells triggered by suboptimal doses of LPS. In addition, neutralization of endogenous CCL5 inhibited B cell proliferation and IgM secretion during stimulation of highly purified B cells, indicating that B cell production of CCL5 has important autocrine effects. These findings demonstrate direct effects of CCL5 on B cells, with significant implications for the development of mucosal adjuvants, and further suggest that CCL5 may be important as a general B cell coactivator.


Infection and Immunity | 2010

Intranasal Vaccinations with the trans-Sialidase Antigen plus CpG Adjuvant Induce Mucosal Immunity Protective against Conjunctival Trypanosoma cruzi Challenges

O. K. Giddings; Christopher S. Eickhoff; N. L. Sullivan; Daniel F. Hoft

ABSTRACT Trypanosoma cruzi is an intracellular protozoan parasite capable of infecting through mucosal surfaces. Our laboratory has previously elucidated the anatomical routes of infection after both conjunctival and gastric challenge in mice. We have shown that chronically infected mice develop strong immune responses capable of protecting against subsequent rechallenge with virulent parasites through gastric, conjunctival, and systemic routes of infection. We have also shown that intranasal immunizations with the unique T. cruzi trans-sialidase (TS) antigen protect against gastric and systemic T. cruzi challenge. In the current work we have investigated the ability of purified TS adjuvanted with CpG-containing oligonucleotides to induce immunity against conjunctival T. cruzi challenge. We confirm that intranasal vaccinations with TS plus CpG induce TS-specific T-cell and secretory IgA responses. TS-specific secretory IgA was detectable in the tears of vaccinated mice, the initial body fluid that contacts the parasite during infectious conjunctival exposures. We further show that intranasal vaccinations with TS plus CpG protect against conjunctival T. cruzi challenge, limiting local parasite replication at the site of mucosal invasion and systemic parasite dissemination. We also provide the first direct evidence that mucosal antibodies induced by intranasal TS vaccination can inhibit parasite invasion.

Collaboration


Dive into the Christopher S. Eickhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac G. Sakala

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ted H. Hansen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuli Zhang

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge