Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Fraser is active.

Publication


Featured researches published by Christopher S. Fraser.


Science | 2005

Structural roles for human translation factor eIF3 in initiation of protein synthesis.

Bunpote Siridechadilok; Christopher S. Fraser; Richard J. Hall; Jennifer A. Doudna; Eva Nogales

Protein synthesis in mammalian cells requires initiation factor eIF3, a ∼750-kilodalton complex that controls assembly of 40S ribosomal subunits on messenger RNAs (mRNAs) bearing either a 5′-cap or an internal ribosome entry site (IRES). Cryo–electron microscopy reconstructions show that eIF3, a five-lobed particle, interacts with the hepatitis C virus (HCV) IRES RNA and the 5′-cap binding complex eIF4F via the same domain. Detailed modeling of eIF3 and eIF4F onto the 40S ribosomal subunit reveals that eIF3 uses eIF4F or the HCV IRES in structurally similar ways to position the mRNA strand near the exit site of 40S, promoting initiation complex assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3

Min Zhou; Alan M. Sandercock; Christopher S. Fraser; Gabriela Ridlova; Elaine Stephens; Matthew R. Schenauer; Theresa Yokoi-Fong; Daniel Barsky; Julie A. Leary; John W. B. Hershey; Jennifer A. Doudna; Carol V. Robinson

The eukaryotic initiation factor 3 (eIF3) plays an important role in translation initiation, acting as a docking site for several eIFs that assemble on the 40S ribosomal subunit. Here, we use mass spectrometry to probe the subunit interactions within the human eIF3 complex. Our results show that the 13-subunit complex can be maintained intact in the gas phase, enabling us to establish unambiguously its stoichiometry and its overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Dissociation takes place as a function of ionic strength to form three stable modules eIF3(c:d:e:l:k), eIF3(f:h:m), and eIF3(a:b:i:g). These modules are linked by interactions between subunits eIF3b:c and eIF3c:h. We confirmed our interaction map with the homologous yeast eIF3 complex that contains the five core subunits found in the human eIF3 and supplemented our data with results from immunoprecipitation. These results, together with the 27 subcomplexes identified with increasing ionic strength, enable us to define a comprehensive interaction map for this 800-kDa species. Our interaction map allows comparison of free eIF3 with that bound to the hepatitis C virus internal ribosome entry site (HCV-IRES) RNA. We also compare our eIF3 interaction map with related complexes, containing evolutionarily conserved protein domains, and reveal the location of subunits containing RNA recognition motifs proximal to the decoding center of the 40S subunit of the ribosome.


Nature Reviews Microbiology | 2007

Structural and mechanistic insights into hepatitis C viral translation initiation

Christopher S. Fraser; Jennifer A. Doudna

Hepatitis C virus uses an internal ribosome entry site (IRES) to control viral protein synthesis by directly recruiting ribosomes to the translation-start site in the viral mRNA. Structural insights coupled with biochemical studies have revealed that the IRES substitutes for the activities of translation-initiation factors by binding and inducing conformational changes in the 40S ribosomal subunit. Direct interactions of the IRES with initiation factor eIF3 are also crucial for efficient translation initiation, providing clues to the role of eIF3 in protein synthesis.


Molecular & Cellular Proteomics | 2007

Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry

Eugen Damoc; Christopher S. Fraser; Min Zhou; Hortense Videler; Greg L. Mayeur; John W. B. Hershey; Jennifer A. Doudna; Carol V. Robinson; Julie A. Leary

Protein synthesis in mammalian cells requires initiation factor eIF3, an ∼800-kDa protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 48 S initiation complex. The eIF3 complex also prevents premature association of the 40 and 60 S ribosomal subunits and interacts with other initiation factors involved in start codon selection. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. Since its initial characterization in the 1970s, the exact size, composition, and post-translational modifications of mammalian eIF3 have not been rigorously determined. Two powerful mass spectrometric approaches were used in the present study to determine post-translational modifications that may regulate the activity of eIF3 during the translation initiation process and to characterize the molecular structure of the human eIF3 protein complex purified from HeLa cells. In the first approach, the bottom-up analysis of eIF3 allowed for the identification of a total of 13 protein components (eIF3a–m) with a sequence coverage of ∼79%. Furthermore 29 phosphorylation sites and several other post-translational modifications were unambiguously identified within the eIF3 complex. The second mass spectrometric approach, involving analysis of intact eIF3, allowed the detection of a complex with each of the 13 subunits present in stoichiometric amounts. Using tandem mass spectrometry four eIF3 subunits (h, i, k, and m) were found to be most easily dissociated and therefore likely to be on the periphery of the complex. It is noteworthy that none of these four subunits were found to be phosphorylated. These data raise interesting questions about the function of phosphorylation as it relates to the core subunits of the complex.


Journal of Biological Chemistry | 2004

The j-Subunit of Human Translation Initiation Factor eIF3 Is Required for the Stable Binding of eIF3 and Its Subcomplexes to 40 S Ribosomal Subunits in Vitro

Christopher S. Fraser; Jennifer Y. Lee; Greg L. Mayeur; Martin Bushell; Jennifer A. Doudna; John W. B. Hershey

Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3–40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity

Kateryna Feoktistova; Enkhee Tuvshintogs; Angelie Do; Christopher S. Fraser

Elevated eukaryotic initiation factor 4E (eIF4E) levels frequently occur in a variety of human cancers. Overexpression of eIF4E promotes cellular transformation by selectively increasing the translation of proliferative and prosurvival mRNAs. These mRNAs possess highly structured 5′-UTRs that impede ribosome recruitment and scanning, yet the mechanism for how eIF4E abundance elevates their translation is not easily explained by its cap-binding activity. Here, we show that eIF4E possesses an unexpected second function in translation initiation by strongly stimulating eukaryotic initiation factor 4A (eIF4A) helicase activity. Importantly, we demonstrate that this activity promotes mRNA restructuring in a manner that is independent of its cap-binding function. To explain these findings, we show that the eIF4E-binding site in eukaryotic initiation factor 4G (eIF4G) functions as an autoinhibitory domain to modulate its ability to stimulate eIF4A helicase activity. Binding of eIF4E counteracts this autoinhibition, enabling eIF4G to stimulate eIF4A helicase activity. Finally, we have successfully separated the two functions of eIF4E to show that its helicase promoting activity increases the rate of translation by a mechanism that is distinct from its cap-binding function. Based on our results, we propose that maintaining a connection between eIF4E and eIF4G throughout scanning provides a plausible mechanism to explain how eIF4E abundance selectively stimulates the translation of highly structured proliferation and tumor-promoting mRNAs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3)

Chaomin Sun; Aleksandar Todorovic; Jordi Querol-Audí; Yun Bai; Nancy Villa; Monica Snyder; John Ashchyan; Christopher S. Lewis; Abbey Hartland; Scott Gradia; Christopher S. Fraser; Jennifer A. Doudna; Eva Nogales; Jamie H. D. Cate

Protein fate in higher eukaryotes is controlled by three complexes that share conserved architectural elements: the proteasome, COP9 signalosome, and eukaryotic translation initiation factor 3 (eIF3). Here we reconstitute the 13-subunit human eIF3 in Escherichia coli, revealing its structural core to be the eight subunits with conserved orthologues in the proteasome lid complex and COP9 signalosome. This structural core in eIF3 binds to the small (40S) ribosomal subunit, to translation initiation factors involved in mRNA cap-dependent initiation, and to the hepatitis C viral (HCV) internal ribosome entry site (IRES) RNA. Addition of the remaining eIF3 subunits enables reconstituted eIF3 to assemble intact initiation complexes with the HCV IRES. Negative-stain EM reconstructions of reconstituted eIF3 further reveal how the approximately 400 kDa molecular mass structural core organizes the highly flexible 800 kDa molecular mass eIF3 complex, and mediates translation initiation.


eLife | 2015

Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

Carmela Sidrauski; Jordan C. Tsai; Martin Kampmann; Brian R. Hearn; Punitha Vedantham; Priyadarshini Jaishankar; Masaaki Sokabe; Aaron S Mendez; Billy W. Newton; Edward L Tang; Erik Verschueren; Jeffrey R. Johnson; Nevan J. Krogan; Christopher S. Fraser; Jonathan S. Weissman; Adam R. Renslo; Peter Walter

The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.


Journal of Biological Chemistry | 2013

Human Eukaryotic Initiation Factor 4G (eIF4G) Protein Binds to eIF3c, -d, and -e to Promote mRNA Recruitment to the Ribosome

Nancy Villa; Angelie Do; John W. B. Hershey; Christopher S. Fraser

Background: The interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 promotes translation initiation in mammals. Results: Human eIF3 subunits -c, -d, and -e interact with two subdomains in eIF4G. Conclusion: Multiple contacts between eIF3 and eIF4G are required for mRNA recruitment to the human ribosome. Significance: Characterizing the eIF3-eIF4G interface might reveal a new regulatory mechanism and provide novel therapeutic targets. Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear. The eIF3e subunit has been shown to directly bind eIF4G, but the potential role of other eIF3 subunits in stabilizing this interaction has not been investigated. It is also not clear if the eIF4A helicase plays a role in stabilizing the interaction between eIF4G and eIF3. Here, we have used a fluorescence anisotropy assay to demonstrate that eIF4G binds to eIF3 independently of eIF4A binding to the middle region of eIF4G. By using a site-specific cross-linking approach, we unexpectedly show that the eIF4G-binding surface in eIF3 is comprised of the -c, -d and -e subunits. Screening multiple cross-linker positions reveals that eIF4G contains two distinct eIF3-binding subdomains within the previously identified eIF3-binding domain. Finally, by employing an eIF4G-dependent translation assay, we establish that both of these subdomains are required for efficient mRNA recruitment to the ribosome and stimulate translation. Our study reveals unexpected complexity to the eIF3-eIF4G interaction that provides new insight into the regulation of mRNA recruitment to the human ribosome.


Nature Structural & Molecular Biology | 2009

The pathway of hepatitis C virus mRNA recruitment to the human ribosome.

Christopher S. Fraser; John W. B. Hershey; Jennifer A. Doudna

Eukaryotic protein synthesis begins with mRNA positioning in the ribosomal decoding channel in a process typically controlled by translation-initiation factors. Some viruses use an internal ribosome entry site (IRES) in their mRNA to harness ribosomes independently of initiation factors. We show here that a ribosome conformational change that is induced upon hepatitis C viral IRES binding is necessary but not sufficient for correct mRNA positioning. Using directed hydroxyl radical probing to monitor the assembly of IRES-containing translation-initiation complexes, we have defined a crucial step in which mRNA is stabilized upon initiator tRNA binding. Unexpectedly, however, this stabilization occurs independently of the AUG codon, underscoring the importance of initiation factor–mediated interactions that influence the configuration of the decoding channel. These results reveal how an IRES RNA supplants some, but not all, of the functions normally carried out by protein factors during initiation of protein synthesis.

Collaboration


Dive into the Christopher S. Fraser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie A. Leary

University of California

View shared research outputs
Top Co-Authors

Avatar

Nancy Villa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelie Do

University of California

View shared research outputs
Top Co-Authors

Avatar

Greg L. Mayeur

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge